Степень сжатия в дизельном двигателе: Степень сжатия дизельного двигателя

Степень сжатия дизельного двигателя


В любом автомобиле двигатель является очень сложной системой, и дизельный не исключение. Они состоят из различных механизмов и сложных систем.
Когда происходит взаимодействие всех систем и механизмов, в двигателе образуется энергия, которая преобразуется во время сгорания смеси, образуемой из воздуха и топлива  и далее кривошипно-шатунный механизм преобразует поступательно-возвратное движение поршня во вращательное движение коленчатого вала.

Содержание:

  1. Что такое степень сжатия дизельного двигателя
  2. Принцип работы
  3. Разница степени сжатия бензинового и дизельного двигателей

Что такое степень сжатия дизельного двигателя

Степенью сжатия является соотношение между полным объемом цилиндра, когда поршень располагается в нижней мертвой точке (НМТ) и объемом камеры сгорания во время достижения поршнем верхней мёртвой точки (ВМТ).


Такое соотношение показывает разницу в давлении, которое образуется в цилиндре мотора при попадании в него топлива.

 В документах, которые идут вместе с двигателем, такое соотношение указывается при помощи математических расчетов, например 18:1. Наилучшая степень сжатия в таком двигателе располагается в диапазоне от 18:1 до 22:1.

Принцип работы

В дизельных моторах в процессе сжатия, то есть когда происходит движение поршня к ВМТ, происходит очень быстрое сокращение объёма цилиндра. В итоге в камере сгорания располагается только воздушная масса, именно она сжимается, такой процесс носит название такт сжатия.
Когда к ВМТ подходит поршень, сжатие воздуха происходит на необходимую степень, происходит подача топлива в камеру сгорания под высоким давлением.

Топливо-воздушная смесь при образованном высоком давлении мгновенно воспламеняется и создает повышенное давление в камере, поршень в такой момент как раз проходит ВМТ. Одним из преимуществ дизеля является то, что смесь возгорается только от давления, нет необходимости в сложной и высокоточной системе зажигания. Но роз без шипов не бывает — обратной стороной повышенного давления является особое внимание к герметизации соединений и наличие топливного насоса высокого давления (ТНВД), штуки прецизионной и очень капризной.

В процессе сгорания смеси образуется сильное давление, которое начинает давить на поршень и вести его к НМТ. При помощи шатуна все поршневые движения преобразуются во вращение коленчатого вала.

Процесс образования давления при возгорании смеси, которое заставляет передвигаться поршень к НМТ, носит название рабочий ход.
Степень сжатия играет особую роль в такте сжатия. Чем больше степень, тем быстрее и легче воспламеняется смесь, которая полностью сгорает и образует требуемое давление.

Если степень сжатия дизельного двигателя имеет высокий показатель, то она будет создавать высокую мощность при низком заборе топлива. Но у них степень сжатия способна варьироваться в оптимальном диапазоне, который нарушать не стоит, и это не просто так:

  • Если образовалась степень сжатия ниже допустимого диапазона, то значительно понижается мощность показателя, а объем потребляемого топлива начнет расти;
  • Если образовалась степень сжатия выше необходимого диапазона, то образуется сильная нагрузка на цилиндры и поршни, в результате они быстро изнашиваются.
  • Если произошло сильное увеличение степени сжатия, поршень начинает прогорать, а шатун изгибаться.

Зафиксированы случаи, когда при сильном повышении сжатия происходил взрыв всей системы без возможности ее восстановления.

Разница степени сжатия бензинового и дизельного двигателей

Степень сжатия и количество расхода топлива считаются основными показателями в обоих видах двигателей. Так как между сжатием и мощностью существует прямая зависимость.

В двигателях на бензине показатель сжатия находится на отметке 12 единиц, а у дизельных моторов данное число варьируется от 13 до 25 единиц.
Показателем экономичности является удельный расход топлива. Его прямой функцией является определение объема сжигаемого топлива во время работы при мощности 1 кВт за один час.
Бензиновые двигатели за час сжигают около 305 граммов топлива, в то время как дизельные всего 200 граммов.
К тому же у бензиновых моторов существует один существенный недостаток, у них низкая тяга во время работы на холостых оборотах.

Очень часто двигатель глохнет, если совершается попытка движения на низких оборотах. А вот у дизельных двигателей такого недостатка нет.

Степень сжатия в двигателе играет очень важную роль, и за этим показателем рекомендуется следить, чтобы мотор работал долгое время, а основные запчасти не изнашивались за короткое время. Вмешиваться в систему, которая создана производителем, нежелательно, но если такая необходимость возникла, то лучше предоставить это дело специалисту.

Читайте также:


Степень сжатия

Степень сжатия в теории – это соотношение объема в пространстве над рабочим поршнем в момент, когда он проходит нижнюю мертвую точку, к объему в камере над поршнем в момент прохождения верхней мертвой точки. Это определение выражает разницу давления в самой камере сгорания в момент, когда происходит впрыск топлива в цилиндр.

В повседневной жизни часто путают степень сжатия с другим понятием, а именно с компрессией дизельного двигателя, однако на практике это два разных термина.

Компрессия – это наибольшее давление создаваемое поршнем в цилиндре на момент его прохождения от нижней мертвой точки к верхней. Эту величину измеряют в атмосферах.

Степень сжатия измеряют математическим соотношением, к примеру, 19:1. Для дизельных двигателей наилучшим считается соотношение в рамках от 18 до 22 к 1. При такой степени сжатия сердце автомобиля будет работать наиболее эффективно. Использование топлива связано напрямую со степенью сжатия. Чем больше давление достигается в камере и больше сжатие, тем экономичней будет расход топлива, при этом полученная мощность может увеличиваться.

Степень сжатия на практике – как это происходит?

Cгорание топливной смеси в двигателе происходит при взаимодействии смешанных паров топлива и воздуха. При возгорании смеси происходит ее расширение, в результате чего увеличивается давление в камере. Коленчатый вал при этом выполняет обороты, соответственно двигатель выполняет один такт полезной работы. В наше время уже практически не выпускаются дизельные двигатели с низкой степенью сжатия — все стремятся к более экономичным и высокооборотистым двигателям с большей степенью сжатия.

Увеличения степени сжатия можно добиться за счет уменьшения камеры сгорания дизельного двигателя. Но при таких изменениях инженерам на заводах приходятся искать компромиссное решение, потому что нужно сохранить давление в камере, а также уменьшить объем сжигания топлива. Одним из способов увеличения сжатия является расточка блоков головки цилиндра – степень сжатия при этом увеличивается, а объем сгорания топлива в камере уменьшается. При этом цилиндр сохраняет свой рабочий объем и объем двигателя не меняется.

Компрессия и степень сжатия двигателя автомобиля

Кто изучает устройство автомобиля, встречает непонятные термины из области работы двигателя. Расскажем что такое компрессия и степень сжатия мотора, их определения. Рассмотрим работу мотора с изменяемой степенью сжатия.

Что такое степень сжатия

Это отношение полного объема цилиндра к объему камеры сгорания. На бензиновом моторе, в зависимости от конкретной задачи, степень сжатия может серьезно варьироваться, достигая величин в 8 до 12.
На дизельных двигателях из-за их конструктивных особенностей она намного больше и оставляет от 14 до 18 единиц. Для бензиновых двигателей, чем выше степень сжатия - тем выше удельная мощность. Но если её сильно увеличить, то может снизится ресурс и возрастает риск проблем с мотором при заправке некачественным топливом.

Что такое компрессия двигателя

Это максимальное давление воздуха в камере сгорания в конце такта сжатия.

Компрессия это давление в цилиндре. Поэтому она зависит от степени сжатия (величина давления в меньшем объеме всегда будет больше, т.е. при увеличении степень сжатия компрессия растет). По величине компрессии можно предварительно судить о состоянии двигателя. При этом важно правильно провести процедуру замера компрессии.

При снижении уровня компрессии необходимо выяснить причину. Это могут быть поршневые кольца или проблемы в клапанном механизме, выяснить это можно так. В проблемные цилиндры с помощью шприца вводят 15-20 грамм моторного масла. Процедуру замера повторяют. Если показания манометра выросли - причина падения в поршневых кольцах, если остались на прежнем уровне - в клапанах.

Двигатели с изменяемой степенью сжатия

Японские производители улучшили эффективность традиционного двигателя за счет поднятия степени сжатия до 14:1, что ранее было просто невозможно. Они заявляют, что с данной степенью сжатия могут работать, как бензиновый, так и дизельный двигатели, причем на обычном 95-ом бензине. Как это возможно? Один из недостатков бензиновых моторов с искровым зажиганием — относительно невысокая степень сжатия. Если ее поднять с нынешних 10:1 до 12,5:1, то эффективность использования теплоты сгоревшего топлива возрастет процентов на шесть. Но чем сильнее сжимаем поршнем воздух с парами бензина, тем выше риск взрывного неконтролируемого самовоспламенения смеси — это детонация, страшный враг двигателя: ударные нагрузки, перегрев, разрушение поршней и колец.

Не зря степень сжатия бензиновых агрегатов редко поднимается выше 11:1.

На самом деле все дело в снижении средней температуры цикла. Чем «холоднее» горючая смесь в камере сгорания, тем сильнее ее можно сжать без риска возникновения детонации. Думаете, японцы решили охлаждать всасываемый воздух? Нет, они занялись системой выпуска.


Этот прием давно известен по гоночным моторам — «настроенные» выпускные каналы по схеме 4-2-1, в которых порции выхлопных газов из всех четырех цилиндров не «толкаются» друг с другом, а строго поочередно вылетают в атмосферу. При чем здесь температура цикла? «Настроенный» выпуск за счет газодинамического наддува улучшает продувку цилиндров — в них остается меньше горячих отработавших газов, которые неизбежно подмешиваются к свежему воздуху на такте впуска и поднимают температуру в конце такта сжатия. Как уверяют, если долю выхлопа снизить с обычных 8% до 4%, то степень сжатия можно безболезненно поднять на три единицы. А за счет охлаждения воздуха при распыле бензина прямо в цилиндр — сжатие можно увеличить еще на единичку.

Чтобы реализовать продвинутый газообмен, пришлось раскошелиться на фазовращатели на обоих распредвалах — и впускном, и выпускном. А вдобавок с помощью компьютерного моделирования придумать еще кучу всяких ухищрений. К примеру, чтобы улучшить «термоизоляцию» камеры сгорания, диаметр цилиндра пришлось уменьшить с нынешних 87,5 мм до 83,5 мм, соответственно увеличив ход поршня.

Длинноходность способствует увеличению крутящего момента на низких оборотах, вдобавок тягу «на низах» улучшают непосредственный впрыск и увеличение степени сжатия — и возникает эффект, который именуют downspeeding. Мол, мотор настолько хорошо тянет «внизу», что среднестатистические обороты при езде снижаются на 15% — это дает эффект по части снижения расхода бензина и выбросов СО2 по сравнению с турбомотором с уменьшенным до 1,4 л рабочим объемом.

Двигатели степень сжатия - Справочник химика 21


    Лимитирующим фактором у бензиновых двигателей является давление сжатия если оно увеличивается, то температура сжимаемых при воспламенении газов повышается, и также увеличивается склонность к детонации. Максимальная степень сжатия в бензиновых двигателях равна 10 1 или 11 1. Иначе обстоит дело в дизельных двигателях, которые используют специальные виды топлив для успешной работы этих двигателей степень сжатия должна быть больше, чем 12 1 или 13 1, а в противном случае [c.436]

    Наибольщее влияние оказывает степень сжатия и диаметр цилиндра. С повыщением степени сжатия резко возрастает температура, при которой протекают предпламенные реакции, а с увеличением диаметра цилиндра длительность пребывания последних порций топлива в камере сгорания становится больше. Найдена эмпирическая зависимость между октановым числом топлива 04, необходимым для бездетонационной работы двигателя, степенью сжатия е и диаметром цилиндра (О)  [c.13]

    Детонационные свойства — важная характеристика бензинов. В цилиндр двигателя внутреннего сгорания поступает смесь паров бензина с воздухом, которая сжимается поршнем и зажигается от запальной свечи (искры). Образующиеся при горении газы двигают поршень. Чем больше степень сжатия смеси в цилиндре, тем выше КПД двигателя. Степень сжатия ограничивается характером горения смесн в цилиндре. При нормальном горении скорость распространения пламени равна 10—15 м/с, однако при некоторых степенях сжатия наступает детонация, при которой пламя распространяется со скоростью 1500—2500 м/с. [c.56]

    Бензин А-66 выпускается для большинства уже применяющихся автомобильных двигателей, степень сжатия которых не превышает [c.365]

    Из гептана и изооктана можно получить смеси с октановым числом от О до 100. Если сжигать такие смеси в испытательном двигателе, изменяя степень сжатия, то чем больше доля изооктана в смеси, следовательно, чем выше октановое число соответствующего горючего, тем при более высокой степени сжатия будет зарегистрирован стук. Каждому октановому числу соответствует определенная степень сжатия, и наоборот. При определении октанового числа неизвестного горючего в испытательном двигателе степень сжатия определяют в тот момент, когда стук слышен наиболее отчетливо. На сегодня октановое число установлено практически у всех жидкостей, которые могут быть компонентами горючего. В отдельных случаях это число выше, чем у вещества, взятого для верхней точки шкалы, и, следовательно, больше 100. [c.82]


    Для испытаний используется установка, применяемая при определении октановых чисел топлив по моторному методу, переоборудованная по типу дизеля путем замены головки карбюраторного двигателя дизельной головкой. Вместо индикатора со-сложной оптической настройкой и нокметром используются обычные индикаторы, которые фиксируют моменты впрыска и воспламенения безинерционными лампами, находящимися на маховике двигателя и связанными с индикаторами впрыска и воспламенения. Для наблюдения за безинерционными лампами с целью установления моментов впрыска и воспламенения имеется визирная трубка, смонтированная на кронштейне над маховиком двигателя. Степень сжатия двигателя изменяется специальным поршнем в пределах от 7 до 23. Топливо подается в камеру сгорания топливным насосом через форсунку. [c.105]

    Зажигание смеси в карбюраторных двигателях осуществляется с помощью запальных свечей. Их конструкции разнообразны и зависят от типа двигателя, степени сжатия и прочих характеристик. При переходе с бензина на СНГ характеристики двигателя могут быть улучшены за счет использования свечи малого теплового радиуса, или холодной свечи, но при этом необходимо повысить степень сжатия из-за малого размера зазора между электродами в свече. Пропуски зажигания из-за отложения на электродах нагара при работе на СНГ весьма редки, они встречаются лишь после длительной эксплуатации. [c.216]

    Комбинированная установка состоит из ряда элементов карбюраторного двигателя (степень сжатия 8 1, рабочий объем 1,6 л), оборудованного системой утилизации тепла выхлопных газов, антифриза и картерного масла центробежного компрессора, приводимого в движение от вала двигателя холодильной установки, в которой с помощью компрессора рабочая жидкость проходит все обычные стадии сжатия паров, утилизации тепла и конденсации паров расширителя жидкости и холодильника теплообменника — испарителя жидкости, работающего на низкопотенциальном тепле. Источниками такого тепла могут быть воздух, вода, тепло грунта, а также тепло, отбираемое в конденсаторе. Этот источник может быть объединен с теплом, аккумулированным в двигателе водой или воздухом. Наиболее вероятные сферы применения комбинированной установки — обогрев помещений горячим воздухом или водой, обогрев плавательных бассейнов, оранжерей и теплиц, различные установки для сушки зерна. Многие из них уже освоены в промышленно-коммерческих масштабах. [c.375]

    Поэтому в карбюраторных двигателях степень сжатия, определяемая соотношением максимального объема камеры сгорания при нижнем положении к минимальному объему (принимаемому за 1) — при верхнем положении поршня, имеет определенные пределы, не превышающие соотношения 8 1. [c.199]

    Детонационная стойкость является основным показателем качества авиа- и автобензинов, она характеризует способность бензина сгорать в ДВС с воспламенением от искры без детонации. Детонацией называется особый ненормальный режим сгорания карбюраторного топлива в двигателе, при зтом только часть рабочей смеси после воспламенения от искры сгорает нормально с обычной скоростью. Последняя порция несгоревшей рабочей смеси, находящаяся перед фронтом пламени, мгновенно самовоспламеняется, в результате скорость распространения пламени возрастает до 1500 - 2000 м/с, а давление нарастает не плавно, а резкими скачками. Этот резкий перепад давления создает ударную детонационную волну, распространяющуюся со сверхзвуковой скоростью. Удар такой волны о стенки цилиндра и ее многократное отражение от них приводит к вибрации и вызывает характерный звонкий металлический стук высоких тонов. При детонационном сгорании двигатель перегревается, появляются повышенные износы цилиндро-поршневой группы, увеличивается дымность отработавших газов. При длительной работе на режиме интенсивной детонации возможны и аварийные последствия. Особенно опасна детонация в авиационных двигателях. На характер сгорания бензина и вероятность возникновения детонации в карбюраторных двигателях оказывают влияние как конструктивные особенности двигателя (степень сжатия, диаметр цилиндра, форма камеры сгорания, расположение свечей, материал, из которого изготовлены поршни, цилиндры и головка блока цилиндра, число оборотов коленчатого вала, угол опережения зажигания, коэффициент избытка и влажность воздуха, нагарообразование, тепловой режим в блоке цилиндров и др. ), так и качество применяемого топлива. [c.123]

    На эффективность процесса сгорания существенно влияют состав смеси (коэффициент избытка воздуха а), нагрузка двигателя, степень сжатия, частота вращения коленчатого вала, а также форма камеры сгорания. Минимальные значения ф , 01, 02 и максимальные Рг достигаются при а= 0,85 0,9,. при котором наблюдаются наибольшие скорости распространения пламени и интенсивность тепловыделения, а следовательно, и наибольшая мощность, развиваемая двигателем. Такой состав смеси называется мощностным. При а> >,0,9 возрастает Ог, 02 изменяется незначительно, но максимальное давление Рг снижается в связи с меньшим энерговыделением при сгорании смеси. Соответственно уменьшается значение с1Р1с1(р. [c.150]


    Впервые она была предложена в 1865 г. для повышения выхода осветительного керосина, в то время являвшегося самым ценным нефтепродуктом. После появления осветительного газа и электричества попытки осуществить крекинг нефти снова прекратились. Только с развитием автомобильной промышленности, вызвавшим непрерывный рост потребления бензина, началось быстрое развитие крекинг-процесса. При создании новых конструкций автомобилей со все более мощными двигателями степень сжатия горючего непрерывно увеличивалась и требования к антидетонационным свойствам бензинов все более повышались. Этим требованиям удовлетворял крекинг-бензин. Начиная с 1936 г., стали применять также термический и каталитический крекинг газообразных низкомолекулярных углеводородов для получения непредельных углеводородов, используемых в качестве исходного сырья при получении так называемых полимеризационных бензинов и изопарафинов. В дальнейше . крекинг стали применять также для получения низковязках масел и снижения температуры их застывания. [c.140]

    Общепринятой является прямая зависимость между количеством гидроперекисей в топливе и интенсивностью последующего детонационного сгорания. Известно, что при переходе с нормального режима работы двигателя (степень сжатия е = 7,0) на детонационный (при 8=9,9) до момента появления горячего пламени количество перекисей увеличивается в три раза [25].  [c.26]

    При этом и возникает детонационный шум . Монщость двигателя в результате детонации сильно снижается. К тому же детонация тем сильнее, чем больше у двигателя степень сжатия (отношение начального объема смеси к конечному при ходе поршня). Но, с другой стороны, с увеличением степени сжатия возрастает мощность двигателя. Известно, что с двадцатых годов до настоящего времени мощность бензиновых двигателей значительно увеличилась. Это достигнуто за счет повышения степени сжатия смеси от 4.1 до 9 1 в результате улучшения детонационной стойкости бензинов. [c.39]

    Иногда работа карбюраторного двигателя сопровождается громким стуком и другими неполадками, называемыми детонацией. Детонация приводит к перегреву двигателя, снижению его мощности, разрушению деталей шатунно-поршневой группы и т. д. Причиной детонации могут быть различные факторы, связанные с химическим составом топлива, конструктивными особенностями двигателя, степенью сжатия и т. д. Из жидких углеводородов, входящих в состав бензинов, наибольшей способностью вызывать детонацию обладают парафиновые углеводороды нормального строения. Парафиновые углеводороды изостроения и ароматические углеводороды, наоборот, характеризуются наивысшей антидетонационной способностью, нафтены и олефины занимают промежуточное положение. [c.101]

    При конструировании принимают следующие величины ход поршня 5 длину поршня 1 относительный вес поршня (вес на 1 см площади поршня) отношение давлений в цилиндре компрессора относительную величину мертвого пространства параметры воздуха на всасывании коэффициент избытка воздуха в двигателе теплоемкость топлива полезный ход (после определения размеров, формы и размещения отверстий для всасывания и выхлопа в цилиндре двигателя) степень сжатия в двигателе (отношение объемов) параметры воздуха в начале сжатия в буферной полости и отношение площади поршня буферной полости. к площади поршня компрессора. [c.307]

    Наиболее мощные дизельные двигатели характеризуются большими габаритами и низким числом-оборотов (до [00 об мин). Маломощные двигатели нйиболее высоко- оборотные (до 3000 об/мин). В современных дизельных двигателях степень сжатия находится в пределах 12—20. Средний расход топлива составляет 160—200 гКл.сл). Дизельные Двигатели отличаются высоким моторесурсом. [c.24]

    Степень сжатия, открытие дросселя, угол опережения зажигания, число оборотов, наддув и т. п. являются параметрами, посредством которых можно воздействовать на появление детонации в двигателе. Следовательно, ими можно пользоваться в качестве параметров для оценки топлива. Используя один из параметров двигателя — степень сжатия, Рикардо впервые произвел оценку склонности различных топлив к детонации на двигателях собственной копструкцин Е-35 и Е-5 с переменной степенью сжатия. [c.606]

    Коренные и шатунные подшипники должны передавать силовые импульсы от сгорающего в камерах сгорания топлива на коленчатый вал, вращающийся со скоростью 500—4000 об1мин и должны при этом противостоять высоким механическим напряжениям в деталях двигателя. Если учесть, что небольшое количество подшипников должно испытывать от 3000 до 10 ООО толчков в 1 мин. и что полная мощность, развиваемая двигателями в 60—200 л. с. и более, должна быть передана этими немногими квадратными сантиметрами рабочей плошади подшипников, становятся очевидными тяжелые условия их работы. Число оборотов двигателей, степень сжатия и мощность на валу сильно возросли за последнее десятилетие, в то время как размеры и вес двигателей, так же как и подшипников, мало или вовсе не увеличились.. В результате нагрузка и напряжение на подшипниках современных двигателей ограничены, поэтому подшипники должны устанавливаться с большой точностью, чтобы они работали исиравно-и без преждевременного износа. Значение вопросов конструкции,, установки и работы подшипников освещены в обширной литературе, небольшая часть которой приведена в конце главы [1 — 14]. [c.398]

    При конвертации дизеля RABA MAN, D2156HM6U в газовый реализована схема организации рабочего процесса с внешним смесеобразованием, обеспечиваемым эжекционной системой подачи газа в газовоздушный смеситель, смешанным регулированием при использовании рычажно-механического управления дроссельными заслонками смесителя, бесконтактно-транзисторной (БСЗ) системой зажигания, имеющей катушку зажигания и датчик-распределитель искрового разряда по цилиндрам двигателя. Степень сжатия понижается до Е =13. [c.57]

    Тип двигателя Степень сжатия Г азосме-ситель-ное устройство Сжиженные газы Сжатый газ  [c.121]


Степень сжатия. Расширяем... - L & S Transportation Services

Степень сжатия. Расширяем кругозор.

Степень сжатия - отношение полного объёма цилиндра двигателя внутреннего сгорания к объёму камеры сгорания. Степень сжатия дизелей 12-20, карбюраторных двигателей 5-10. Повышение степени сжатия (до определённого предела) увеличивает кпд двигателя.
Эффективность

Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обеднённой смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.

Высокая степень сжатия увеличивает мощность. Приведённые данные предполагают, что увеличение степени сжатия не создаёт проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идёт вверх, то при каждом увеличении прирост мощности будет всё меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).

Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путём установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определённых путём математических расчётов из фиксированного объёма), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки« цилиндра (объёмная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объёмной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надёжность двигателя.

Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надёжность двигателя. Это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объёмной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается« смесью так, как если бы работал невидимый нагнетатель.

Степень сжатия двигателя, компрессия и октановое число

Ноя 1 2014

Понятие «степень сжатия» относится к поршневым двигателям, у которых есть камера сгорания. Под этим термином понимают отношение объема пространства над поршнем в момент, когда он находится в нижней мертвой точке к объему надпоршневого пространства в верхней мертвой точке.

Иными словами, это выраженная математически разница в давлении внутри камеры сгорания на момент подачи горючей смеси в цилиндр, и на момент ее воспламенения.

Вокруг этого термина очень много недоразумений и мифов. Чтобы понять, что истина, и что ложь, стоит разобраться, почему у разных двигателей этот параметр отличается, и какие преимущества дает низкая или высокая степень сжатия.

Преимущества высокой степени сжатия

Двигатель внутреннего сгорания работает за счет воспламенения смеси воздуха и паров топлива. При воспламенении смесь расширяется и толкает поршень, который вращает коленвал. При большей степени сжатия интенсивность давления на поршень увеличивается, и зак один такт двигатель совершает больше полезной работы.

Отсутствие детонации в дизельных двигателях объясняется просто: в камере сгорания сначала сжимается чистый воздух, а топливо впрыскивается позже.

При этом подразумевается, что количество бензина в топливо-воздушной смеси остается неизменным, и за счет большего количества воздуха оно сгорает с более высоким КПД.

На современном этапе конструирования легковых автомобилей применение двигателей с низкой степенью сжатия практически прекратилось. Несмотря на то, что в них допустимо использовать низкооктановый и недорогой бензин А-80, их популярность равна нулю.

Дело в том, что современные потребители стремятся приобретать автомобили с большим количеством «лошадей под капотом», а с двигателей, рассчитанных на низкооктановый бензин (например, двигателя УАЗ 469, (который, правда, с измененной степенью сжатия и рядом модернизаций устанавливается в УАЗ Hunter), снять большую мощность невозможно по конструктивным причинам.

Можно ли изменить степень сжатия?

Увеличить степень сжатия можно, уменьшив объем камеры сгорания, но при модернизации уже имеющегося двигателя инженерам приходится постоянно искать компромисс между эффективностью и безопасностью. Дело в том, что, увеличение степени сжатия ведет к понижению детонационного порога.

Если увеличить степень сжатия слишком сильно, можно столкнуться с тем, что имеющимися средствами предотвратить возникновение детонации не получится. Иными словами, порой разработать (или поставить от другого, более мощного автомобиля) новый двигатель легче, чем модернизировать старый.

Для современных двигателей характерна высокая степен сжатия. В подавляющем большинстве случаев в них используется бензин с октановым числом не ниже 95 или даже 98.

Один из вариантов изменения степени сжатия, доступный частным тюнерам – фрезеровка головки блока цилиндров. После «укорачивания» ГБЦ объем камеры сгорания уменьшается.

Степень сжатия в этом случае увеличится. Есть и обратная сторона такой манипуляции (кстати, официально ее называют форсированием) уменьшится общий объем горючей смеси, сгорающей в цилиндре за один цикл.

Степень сжатия или компрессия?

Степень сжатия часто путают с понятием «компрессия». Это не одно и то же. Компрессией называют максимальное давление в цилиндре при движении поршня от нижней мертвой точки к верхней.

Компрессия измеряется в атмосферах, а степень сжатия имеет вид математического отношения, например, 10:1 (десять к одному).

Преждевременное воспламенение и детонация

Смесь, поступающая в камеру сгорания, должна не взрываться, а гореть, причем, равномерно, и на протяжении всего отрезка времени, пока поршень движется вниз.

При этом условии энергия расходуется максимально эффективно, а детали поршневой группы изнашиваются равномерно и не перегреваются. Сложность заключается в том, что скорость горения смеси обычно гораздо быстрее скорости движения поршня.

В связи с этим и возникает основная проблема, встающая на пути тех, кто задался целью увеличить степень сжатия. При увеличении давления смесь самопроизвольно возгорается.

Это явление называется преждевременным воспламенением. Более того, возгорание смеси происходит, когда поршень еще только завершает фазу сжатия. В этом случае энергия сгорающего топлива создает дополнительное сопротивление и растрачивается на выполнение бесполезного действия.


Вторая проблема: выделение чрезмерного количества энергии. Проще говоря – взрыв. Явление это в теории двигателестроения называется детонацей и имеет крайне негативные последствия.

Таким образом, увеличение степени сжатия может сыграть с владельцем двигателя злую шутку. Чтобы избежать неприятных последствий, стоит ознакомиться с таким понятием, как октановое число.

Что такое октановое число и на что оно влияет?

Бензин, который используется для работы ДВС, отличается стойкостью к детонации и самовоспламенению. Для обозначения уровня этой стойкости вводится понятие «октановое число».

Детонация возникает только в камере сгорания бензинового двигателя. Сжигание дизельного топлива требует большей степени сжатия, и воспламеняется оно «само собой» разогреваясь под воздействием давления и соприкасаясь с раскаленными металлическими деталями.

Казалось бы, все условия для возникновения созданы, но благодаря некоторым особенностям дизельного двигателя он полностью защищен от этого вредного явления.

Важный факт – октановое число бензина не влияет на количество энергии, которое выделяет топливо при сгорании. Иными словами, думать, что заливая в двигатель бензин с более высоким октановым числом, вы повышаете его мощность, ошибочно.

Все очень просто: при высоком значении степени сжатия необходимо использовать топливо с большим октановым числом.

Последствия использования топлива с несоответствующим октановым числом

Стоит обратить внимание, что при несоответствии используемого топлива требованиям завода-изготовителя, могут возникнуть следующие проблемы:

— При использовании топлива с большим октановым числом возможно прогорание выпускных клапанов. Происходит это потому, что бензин с большим октановым числом горит с меньшей температурой и медленнее. Соответственно, при его использовании, на фазе выпуска вместо отработанных газов через выпускные клапана вылетает горящая смесь.

— При использовании топлива с высоким октановым числом на свечах возможно образование нагара. Причины все те же: скорость горения может не совпадать с циклами хода поршня.

— При использовании топлива с низким октановым числом блок управления двигателем (или октан-корректор распределителя) не сможет установить угол опережения зажигания, исключающий детонацию.

Альтернативный способ изменения степени сжатия

В современной практике разработки двигателей активно применяется альтернативный способ динамического изменения степени сжатия – установка турбонагнетателя.

Он помогает увеличить давление в камере сгорания, не изменяя при этом ее физического объема. Принцип работы нагнетателя заключается в том, что в камеру сгорания под давлением поступает больше воздуха за единицу времени.

В результате степень сжатия меняется постоянно, реагируя на увеличение и уменьшение нагрузки на двигатель. Этот процесс происходит под контролем электроники, которая оперативно изменяет условия воспламенения топливо-воздушной смеси.

В результате всех перечисленных выше негативных факторов, связанных с изменением давления в камере сгорания, удается избежать.

В Объединенных Арабских Эмиратах крайней популярностью пользуются гонки на дизельных внедорожниках. Для увеличения степени сжатия и мощности используются турбины максимальной производительности

Поклонники тюнинга восприняли применение турбонагнетателей как более гибкий и управляемый способ увеличения мощности двигателя.

Можно сказать, что приобретение турбо-кита (набора деталей, предназначенных для установки турбонаддува на конкретный двигатель), гораздо более распространена по сравнению с форсированием. Нагнетатели разных типов успешно используются и при необходимости увеличить эффективность работы дизельного двигателя.

Похожие записи автомобильной тематики:

Дизельный двигатель

16.05.2010

Описание конструкции

Дизельный двигатель - это двигатель с возвратно-поступательным движением поршней, имеющий такую же базовую конструкцию и рабочий цикл, что и бензиновый двигатель. Главное отличие между дизельным двигателем и бензиновым двигателем заключается в используемом топливе и способе воспламенения топлива для обеспечения его сгорания.

Работа

В дизельных двигателях для зажигания воздушно-топливной смеси в камере сгорания используется теплота сжатия. Такое зажигание выполняется с использованием высокого давления сжатия и дизельного топлива, впрыскиваемого в камеру сгорания под очень высоким давлением. Комбинация дизельного топлива и высокого давления сжатия обеспечивает самовоспламенение, позволяющее начать цикл сгорания.

Блок цилиндров

Блоки цилиндров дизельного и бензинового двигателя аналогичны друг другу, но в их конструкции имеются некоторые различия. В большинстве дизельных двигателей используются гильзы цилиндров, а не цилиндры, выполненные как часть блока. При использовании гильз цилиндров может быть выполнен ремонт, позволяющий эксплуатировать двигатель в течение длительного времени. На тех дизельных двигателях, в которых не используют гильзы цилиндров, стенки цилиндра толще, чем стенки на бензиновом двигателе с аналогичным рабочим объемом. Для увеличения опорной поверхности коленчатого вала дизельные двигатели имеют более тяжелые и более толстые коренные перемычки.

Мокрые гильзы цилиндров

Мокрые гильзы цилиндров, используемые в дизельных двигателях, аналогичны используемым в бензиновых двигателях. Физические размеры гильз могут отличаться, чтобы соответствовать рабочим условиям дизельного двигателя.

Коленчатый вал

Коленчатый вал, используемый в дизельных двигателях имеет конструкцию, аналогичную конструкции коленчатого вала на бензиновых двигателях, но с двумя отличиями:

•    Коленчатые валы дизельных двигателей обычно кованые, а не литые. Ковка делает коленчатый вал более прочным.
•    Шейки коленчатого вала дизельного двигателя обычно больше по размеру, чем шейки коленчатого вала бензинового двигателя.
Увеличение шеек позволяют коленчатому валу выдерживать большие нагрузки.

Шатуны

Шатуны, используемые в дизельных двигателях, обычно изготавливаются из кованной стали. Шатуны дизельных двигателей отличаются от шатунов бензиновых двигателей тем, что крышки смещены и имеют мелкие зубья на поверхности сопряжения с шатуном. Конструкция со смещением и мелкими зубьями помогает удерживать крышку на месте и уменьшает нагрузку на болты шатуна.

Поршни и поршневые кольца

Поршни, используемые в дизельных двигателях, предназначенных для работы в легких условиях, выглядят аналогично поршням, используемым в бензиновых двигателях. Дизельные поршни тяжелее чем поршни бензиновыхдвигателей, потому что дизельные поршни обычно изготавливаются из кованной стали, а не из алюминия, и больше внутренняя толщина материала.

Компрессионные кольца, используемые в дизельных двигателях, обычно изготавливаются из чугуна и часто покрываются хромом и молибденом, что позволяет уменьшить трение.

Головка цилиндров

Внешне головка цилиндров дизельного двигателя во многом выглядит подобно головке цилиндров бензинового двигателя. Но имеется много внутренних конструктивных различий, которые делают дизельные двигатели иными, оригинальными.

На дизельном двигателе сама головка цилиндров должна быть намного более прочной и более тяжелой, чтобы выдержать большие тепловые нагрузки и воздействие давления. Конструкция камеры сгорания и воздушные каналы на дизельных двигателях могут быть более сложными, чем на бензиновом двигателе.

В дизельных двигателях используются несколько конструкций камер сгорания, но две конструкции наиболее распространены: неразделенная камера сгорания и вихревая камера.

Конструкция с неразделенной камерой сгорания

Наиболее распространенный тип камеры сгорания для дизельного двигателя - это неразделенная камера, также известная как камера сгорания с прямым впрыскиванием. В неразделенной конструкции обеспечение турбулентности (завихрения) впускаемого воздуха происходит за счет формы канала впуска воздуха. Топливо впрыскивается прямо в камеру сгорания.

Конструкция с вихревой камерой

В конструкции с вихревой камерой используются по две камеры сгорания для каждого цилиндра. Главная камера соединяется узким каналом с меньшей по размеру вихревой камерой. В вихревой камере находится топливная форсунка. Вихревая камера предназначается для обеспечения начала процесса сгорания. Впускаемый воздух вводится в вихревую камеру через узкий канал. Затем в вихревую камеру впрыскивается топливо, и образуемая смесь загорается. После этого горящая смесь входит в главную камеру сгорания, где и заканчивает свое горение, заставляя поршень перемещаться вниз.

Клапаны и седла клапанов

Клапаны дизельного двигателя изготавливаются из специальных сплавов, которые способны хорошо работать при высоком теплообразовании и давлении, характерным для дизельного двигателя. Некоторые клапаны частично заполняются натрием, который помогает отводить тепло. Большой процент от тепла передается от головки клапана седлу клапана. Для обеспечения соответствующей теплопередачи особое внимание должно быть уделено ширине седла клапана.

Широкое седло клапана имеет преимущество, заключающееся в способности передавать большее количество тепла. Однако, широкое седло клапана имеет и большую возможность накопления отложений нагара, которые могут стать причиной протечек в клапане. Узкое седло клапана обеспечивает лучшее уплотнение, чем широкое седло клапана, но не передает такое же количество тепла. В дизельном двигателе необходим компромисс между широкими и узкими седлами клапанов.

В дизельных двигателях часто используются вставные седла клапанов. Вставки имеют преимущество, заключающееся в возможности их замены. Вставные седла клапанов изготавливаются из специальных металлических сплавов, которые выдерживают воздействие тепла и давления дизельного двигателя.

Система подачи топлива

Обычная конструкция

В обычной системе подачи дизельного топлива топливо вытягивается из топливного бака, отфильтровывается и подается к насосу высокого давления. Топливо под высоким давлением доводится до требуемого давления и подается к топливному коллектору, который питает топливные форсунки. Система управления впрыскиванием в соответствующие моменты времени активизирует форсунки, которые на ходе сжатия поршня впрыскивают топливо для его последующего сгорания.

Конструкция с общим топливным коллектором ("Common rail")

В дизельных двигателях с общим топливным коллектором используются независимые системы создания давления топлива и впрыскивания топлива. Топливный насос высокого давления вытягивает топливо от бака и подает его через регулятор давления к общему топливному коллектору. Насос высокого давления состоит из перекачивающего насоса низкого давления и камеры высокого давления. Впрыскивание топлива управляется модулем управления силовым агрегатом (РСМ) и модулем управления форсунками (IDM), который регулирует продолжительность открытого состояния форсунок в зависимости от рабочих условий двигателя.

В конструкции с общим топливным коллектором уровень токсичности отработавших газов значительно уменьшен и минимизирован шум при работе. Все это следствие большего управления процессом сгорания. Регулировка давления топлива и фазы работы форсунок управляются ЮМ и РСМ. Также изменена конструкция форсунки, которая теперь позволяет выполнять предварительное(пред-впрыскивание)и заключительное (пост-впрыскивание) впрыскивание топлива на различных стадиях хода сжатия и рабочего хода.

Улучшенное управление подачей топлива позволяет обеспечивать более чистое, более устойчивое сгорание и создавать требуемое давление в цилиндрах. Это оказывает влияние на уменьшение токсичности выхлопа и шума при работе.

Система смазки

Система смазки, используемая в дизельных двигателях, по принципу действия аналогична системам бензиновых двигателей. Большинство дизельных двигателей имеют маслоохладитель того или иного типа, помогающий отводить тепло от масла. Масло течет под давлением по каналам двигателя и возвращается к картеру двигателя.

Смазочное масло, используемое в дизельных двигателях, отличается от масла, используемого в бензиновых двигателях. Специальное масло необходимо по той причине, что при работе дизельного двигателя происходит большее загрязнение масла, чем в бензиновом двигателе. Высокое содержание углерода в дизельном топливе заставляет масло, используемое в дизельных двигателях, изменять свой цвет вскоре после начала его использования. Должно использоваться только такое моторное масло, которое предназначено специально для дизельных двигателей.

Система охлаждения

Система охлаждения дизельного двигателя обычно имеет больший заправочный объем, чем система охлаждения бензинового  двигателя. Температура внутри дизельного двигателя должна тщательно контролироваться, потому что для самовоспламенения топлива используется тепло.

Если температура двигателя слишком низкая, возникают следующие проблемы:

•    Повышенный износ
•    Плохая экономия топлива
•    Скапливание воды и отстоя в картере двигателя
•    Потеря мощности

Если температура двигателя слишком высокая, возникают следующие проблемы:

•    Повышенный износ
•    Задиры
•    Детонация
•    Прогорание поршней и клапанов
•    Проблемы со смазкой
•    Заклинивание движущихся частей
•    Потеря мощности

Система впрыскивания топлива

Дизельный двигатель работает по принципу самовоспламенения. Впускаемый воздух и топливо сжимаются в камере сгорания так сильно, что молекулы нагреваются и загораются без помощи внешней искры зажигания. Степень сжатия дизельного двигателя намного выше, чем степень сжатия бензинового двигателя. Значение степени сжатия в дизельных двигателях с прямым забором воздуха равняется приблизительно 22:1. Турбодизельные двигатели имеют степень сжатия в диапазоне 16.5-18.5:1. Создается давление сжатия, и температура воздуха возрастает приблизительно с 500 °С до 800 °С (от 932 °F до 1 472 °F).

Дизельные двигатели могут работать только с системой впрыскивания топлива. Смесеобразование происходит только в фазе впрыскивания и сгорания топлива.

В конце хода сжатия топливо впрыскивается в камеру сгорания, где оно смешивается с горячим воздухом и загорается. Качество этого процесса сгорания зависит от качества смесеобразования. Т.к. топливо впрыскивается столь поздно, оно не имеет много времени для смешивания с воздухом. В дизельном двигателе соотношение "воздух -топливо" постоянно поддерживается на уровне больше чем 17:1, таким образом обеспечивается сгорание всего топлива. За более подробной информацией обратитесь к публикации "Работа двигателя и его систем".

автозапчасти в москве

Что такое степень сжатия - бензиновый и дизельный двигатель?

Введение

Мы часто говорим о выходной мощности, когда речь идет о двигателе внутреннего сгорания, на протяжении более чем столетия проводились различные исследования для изучения и изменения факторов, влияющих на выходную мощность двигателя внутреннего сгорания, конфигурацию двигателя. как CC, решается после этих различных исследований. А теперь давайте подумаем: влияет ли размер цилиндра на выходную мощность двигателя? Как конфигурация двигателя, например его объем, влияет на мощность двигателя?

Что такое степень сжатия?

Степень сжатия (CR) двигателя I C - это отношение общего объема камеры сгорания к объему, оставшемуся после полного сжатия i.е. зазорный объем. Проще говоря, это соотношение между общим объемом камеры сгорания, который остается, когда поршень находится в своей нижней мертвой точке, и объемом, оставшимся внутри камеры сгорания, когда поршень перемещается в свою верхнюю мертвую точку.

Например, давайте рассмотрим двигатель с общим объемом 1000 куб. См, из которых 900 куб.е. объем, оставшийся внутри цилиндра, когда поршень достиг ВМТ. Таким образом, степень сжатия этого двигателя будет 1000: 100 или 10: 1.

Установлено, что чем выше степень сжатия, тем больше выходная мощность двигателя.

Степень сжатия дизельного двигателя намного выше, чем у бензинового двигателя. то есть для бензинового двигателя CR варьируется от 10: 1 до 14: 1, а для дизельных двигателей CR варьируется от 18: 1 до 23: 1.

Также читайте:

Зачем нужна степень сжатия?

Степень сжатия (CR) двигателя I C - это критерий проектирования, который должен определяться группой разработчиков при проектировании двигателя; CR выбирается в соответствии с потребностью двигателя в мощности, поскольку он напрямую влияет на мощность двигателя, а также на общий размер двигателя.

Потребность CR различна для дизельных и бензиновых двигателей, которые заключаются в следующем:

1. Бензиновый двигатель -

Если мы говорим о 4-тактном бензиновом двигателе, степень сжатия имеет свое собственное значение:

  • Как мы все знаем, в бензиновом двигателе воздушно-топливная смесь поступает в камеру сгорания во время такта всасывания, и для надлежащего перемешивания и для правильного сгорания этой воздушно-топливной смеси требуется сжатие этой смеси, которое выполняется двигателем в его такте сжатия. , поэтому для правильного сгорания топливовоздушной смеси требуется хорошая степень сжатия бензинового двигателя, что, в свою очередь, обеспечивает лучший тепловой КПД.
  • Давление внутри цилиндра увеличивается во время такта сжатия, что, в свою очередь, повышает температуру топливовоздушной смеси, что приводит к полному или правильному сгоранию топлива, когда свеча зажигания создает искру, что, в свою очередь, обеспечивает лучшую экономию топлива, а также предотвращает двигатель от различных дефектов вроде стук.
  • Бензиновый двигатель с надлежащим CR обеспечивает сбалансированное количество мощности и скорости.
  • Бензиновый двигатель обычно имеет степень сжатия от 10: 1 до 14: 1 в зависимости от области применения и требований конструкции.

2. Дизельный двигатель -

Когда дело доходит до дизельных двигателей, степень сжатия имеет большее значение, так как -

  • В дизельном двигателе требуется высокий CR, поскольку у дизельного двигателя нет свечей зажигания, поэтому сгорание топлива полностью зависит от сжатия воздуха, обеспечиваемого тактом сжатия дизельного цикла, из-за чего дизельный двигатель также известен как двигатель с воспламенением от сжатия.
  • Дизельный двигатель с высокой степенью сжатия обеспечивает двигатель с высокой степенью сжатия i.е. обеспечивает высокий рост давления, который требуется для повышения температуры сжимаемого воздуха до температуры самовоспламенения топлива, которое должно распыляться топливными форсунками, которые, в свою очередь, обеспечивают полное или надлежащее сгорание топлива.
  • Дизельные двигатели известны тем, что обеспечивают высокую выходную мощность, которая обусловлена ​​высокой степенью сжатия дизельного двигателя, поскольку мы знаем, что чем выше CR, тем выше будет термический КПД или рабочая мощность.
  • Дизельный двигатель с высоким CR обеспечивает высокую экономию топлива благодаря более высокому тепловому КПД, обеспечиваемому сгоранием с высокой степенью сжатия.
  • Дизельные двигатели обычно имеют более высокую степень сжатия, которая варьируется от 18: 1 до 23: 1 в зависимости от области применения и требований к конструкции.

Также читайте:

Критерии проектирования, от которых зависят степени сжатия

1.
Длина хода -

Длина хода двигателя - это длина камеры сгорания или расстояние между ВМТ и НМТ двигателя. В цилиндре двигателя степень сжатия зависит от длины хода, поскольку чем больше длина хода цилиндра двигателя, тем выше будет его CR.

2. Диаметр отверстия -

Форма цилиндра двигателя цилиндрическая, поэтому диаметр отверстия двигателя - это диаметр или внутренний диаметр цилиндра двигателя, внутри которого движется поршень. Степень сжатия двигателя зависит от Диаметр цилиндра Чем больше диаметр отверстия двигателя, тем выше степень сжатия.

3. Квадратный двигатель -

Это тип двигателей, в которых длина хода цилиндра равна диаметру внутреннего отверстия цилиндра двигателя, что обеспечивает надлежащий баланс мощности и скорости вращения.

Примечание. Практически ни один двигатель не является квадратным в этом мире, но двигатели формулы 1 сделаны примерно квадратными.

4. Число цилиндров -

Число цилиндров также влияет на CR двигателя, поскольку двигатель с большим количеством поршней обеспечивает более высокую степень сжатия.

Таким образом, из приведенных выше критериев проектирования можно сделать вывод, что двигатели большего размера имеют более высокую степень сжатия, чем двигатели небольших размеров.

В связи с более высокими требованиями к габаритам рядных двигателей с высоким CR, используются двигатели V-образной формы, обеспечивающие высокую степень сжатия при компактных размерах двигателя.

В этой статье мы узнали, что такое степень сжатия и как она влияет на мощность двигателя. Мы также обсудили факторы, от которых зависит CR. Если вам нравится эта информация, не забудьте поставить лайк и поделиться ею.

Дизельный двигатель

Дизельный двигатель внутреннего сгорания отличается от бензинового цикла Отто тем, что для воспламенения топлива используется более высокая степень сжатия топлива, чем свеча зажигания («воспламенение от сжатия», а не «искровое зажигание»).

Стандартный цикл дизельного двигателя

В дизельном двигателе воздух сжимается адиабатически со степенью сжатия обычно от 15 до 20. Это сжатие повышает температуру до температуры воспламенения топливной смеси, которая образуется при впрыске топлива при сжатии воздуха.

Идеальный стандартный цикл по воздуху моделируется как обратимое адиабатическое сжатие, за которым следует процесс сгорания при постоянном давлении, затем адиабатическое расширение как рабочий ход и изоволюметрический выхлоп.Новый заряд воздуха всасывается в конце выхлопа, как показано процессами a-e-a на диаграмме.

Поскольку такты сжатия и мощности этого идеализированного цикла являются адиабатическими, эффективность может быть рассчитана на основе процессов постоянного давления и постоянного объема. Энергия на входе и выходе, а также КПД могут быть рассчитаны исходя из температуры и удельной теплоемкости:

Эту эффективность удобно выразить через степень сжатия r C = V 1 / V 2 и степень расширения r E = V 1 / V 3 . КПД можно записать

, и это можно преобразовать в форму

Для стандартного воздушного двигателя с γ = 1,4, степенью сжатия r C = 15 и степенью расширения r E = 5, это дает идеальный КПД дизеля 56%.

Дизельный цикл зависит от того, будет ли эта температура достаточно высокой для воспламенения топлива при его впрыске.

* фунт / кв. Дюйм - манометрическое давление в фунтах на квадратный дюйм.Обычные манометры в США измеряют превышение в фунтах на квадратный дюйм атмосферного давления.

Почему дизельные двигатели более эффективны, чем бензиновые

Тепловой КПД, степень сжатия и плотность топлива являются основными факторами, определяющими топливную эффективность - также известную как экономия топлива - двигателя. Если он установлен в автомобиле, пикапе, грузовике, лодке, корабле, тяжелом оборудовании и т. Д., Даже больше, переменные факторы влияют на топливную эффективность двигателя. Что касается топливной эффективности двигателя, используемого для передвижения, транспорта и мобильности, такие факторы, как вес транспортного средства, местность и динамика воздушного потока, играют роль. Но, хотя эти переменные играют роль в определении эффективности использования топлива, они ни в коем случае не являются самыми важными факторами.

Три переменных, которые в наибольшей степени влияют на топливный КПД двигателя, - это плотность топлива, эффективность сгорания и термический КПД. Из трех наиболее важных переменных, определяющих экономию топлива, наибольшее влияние оказывает термический КПД.

Никакая другая переменная не играет большей роли в определении экономии топлива, чем тепловой КПД. Причина в том, что тепловой КПД является побочным продуктом всех других переменных, связанных с сгоранием, включая плотность топлива, плотность энергии топлива, степень сжатия двигателя и соотношение воздуха и топлива, подаваемого в двигатель.

Термический КПД для всех практических целей - это «газовый» расход.

Что такое термический КПД

Как определение непрофессионала, так и строгое определение термического КПД - два самых простых объяснения в физике для понимания.Термический КПД - это процент энергии (топлива), который производит работу. Dictionary.com объясняет: «Определение термической эффективности, отношение производимой работы теплового двигателя к подводимой теплоте, выраженное в тех же единицах энергии». Термический КПД - это часть энергии, которую двигатель производит во время сгорания, которая толкает автомобиль по дороге, раскручивает гребной винт на лодке, поднимает стрелу и ковш экскаватора с обратной лопатой и т. Д.

Что касается двигателей внутреннего сгорания, тепловой КПД - это мера того, какой процент тепла - тепла, являющегося синонимом энергии / топлива - вложено в двигатель, который тот же самый двигатель может преобразовать в работу.Тепловая энергия - это мера процента тепла в галлоне топлива, которое двигатель может использовать для толкания транспортного средства по дороге или выполнения другой механической задачи, такой как подъем ковша или стрелы, процент энергии в топливе, который двигатель не тратит впустую.

Другой взгляд на тепловую энергию

Тепловая энергия также может рассматриваться как количество энергии, потребляемой двигателем, по сравнению с количеством энергии, которое он тратит впустую, сколько энергии в галлоне газа идет на движение и сколько тепла уходит в выхлоп или теряется. в окружающую среду, окружающую двигатель.

Чтобы понять основы термического КПД двигателя, необходимо понимать основы двигателей внутреннего сгорания.

Тепловой КПД дизельных двигателей по сравнению с бензиновыми двигателями

Двигатели внутреннего сгорания также называют «тепловыми двигателями». Двигатели внутреннего сгорания преобразуют энергию - энергию топлива - в тепло, а тепло создает работу. Но только небольшая часть тепла / энергии / топлива становится работой, гораздо меньше половины.

В транспортных средствах и механизмах используются два типа двигателей внутреннего сгорания: двигатели с искровым зажиганием и двигатели с воспламенением от сжатия. Дизельные и биодизельные двигатели - это двигатели сжатия, а двигатели, работающие на бензине, этаноле и пропане, - это двигатели с искровым зажиганием.

Механика искрового двигателя

Электродвигатели с искровым зажиганием воспламеняют топливовоздушную смесь небольшим электрическим зарядом. Когда поршень начинает опускаться после такта выпуска - хода, в котором поршень выталкивает выхлопные газы из предыдущего цикла выпуска из цилиндра, - форсунки заполняют цилиндр топливовоздушной смесью.С нижней точки своего хода поршень начинает подниматься, сжимая топливно-воздушную смесь. В верхней части поршневого цикла зажигается искра, воспламеняющая смесь.

Механика компрессорного двигателя

В отличие от двигателей с искровым зажиганием, которые добавляют топливовоздушную смесь в нижней части поршневого цикла, только воздух находится в цилиндре в нижней части поршневого цикла в двигателе сжатия. Поршень поднимается и сжимает воздух, повышая температуру внутри цилиндра, и в верхней части хода поршня форсунки впрыскивают дизельное топливо в горячий сжатый воздух.Температура воздуха настолько высока, что вызывает возгорание дизельного топлива.

Хотя и компрессионные двигатели, и двигатели с искровым зажиганием удивительно неэффективны, дизельные двигатели значительно более эффективны, чем бензиновые.

Тепловые двигатели - особенно бензиновые, этанольные и газовые двигатели - чрезвычайно неэффективны. Даже самые термически эффективные бензиновые двигатели теряют около 70 процентов производимой ими энергии. По данным GreenCarReports, хотя и немного лучше, даже самые термически эффективные дизельные двигатели по-прежнему тратят от 50 до 60 процентов.com. «Эффективность, с которой они это делают, измеряется термином« тепловой КПД », и большинство бензиновых двигателей внутреннего сгорания в среднем составляют около 20 процентов теплового КПД. Дизель обычно выше - в некоторых случаях приближается к 40 процентам ».

Почему тепловые двигатели неэффективны

Существуют различные типы двигателей внутреннего сгорания - дизельный, бензиновый, этанол, природный газ, пропан, биодизель и т. Д. Но в разной степени все двигатели внутреннего сгорания неэффективны. Причина неэффективности двигателей внутреннего сгорания универсальна.Просто технологии двигателей, необходимые для преобразования 100 процентов тепла, производимого двигателем во время сгорания, не существуют.

Очень большая часть тепла, выделяемого при сгорании, выдувается через выхлопную трубу. Конвекция и теплопроводность отвечают за оставшуюся потерю тепла; тепловые двигатели производят то, что не превращается в механическую энергию. Блок двигателя поглощает тепло, потому что охлаждающая жидкость в радиаторе сохраняет двигатель холодным, поэтому он не перегревается и не заедает. Воздух за пределами двигателя также поглощает тепло, потому что он также отбирает тепло из блока цилиндров.

Однако, честно говоря, не существует системы преобразования энергии, которая была бы эффективна на 100 процентов. Например, дровяные печи и электростанции тратят огромное количество энергии. Большая часть энергии просто выходит из дымохода или дымовой трубы.

Тепловые двигатели, однако, особенно неэффективны.

Но есть средства повышения теплового КПД двигателей внутреннего сгорания. Повышение степени сжатия двигателя внутреннего сгорания - первое средство.

Какая степень сжатия

Именно степень сжатия в большей степени, чем какая-либо другая техническая характеристика двигателя, определяет тепловой КПД - или, точнее, тепловую неэффективность. Степень сжатия - это разница в объеме цилиндра между временем, когда поршень находится в нижней части своего цикла, и временем, когда поршень находится в верхней части своего цикла.

Опять же, когда поршень находится в нижней части цикла, цилиндр заполнен воздухом в случае двигателя с компрессионным двигателем и наполнен топливовоздушной смесью в случае двигателя с искровым зажиганием и когда поршень движется вверх. воздушная или воздушно-топливная смесь начинает сжиматься, и чем сильнее сжимается воздух или воздушно-топливная смесь, тем сильнее увеличивается температура внутри цилиндра, и как только поршень достигает вершины своего цикла, воздушно-топливная смесь сгорает.

Чем больше нагревается воздух или топливовоздушная смесь в результате сжатия перед сгоранием, тем выше термический КПД.

Как степень сжатия влияет на тепловую эффективность

Чем выше степень сжатия до определенного момента, тем выше термический КПД двигателя. Термический КПД определяется как количество тепла или теплового потенциала, то есть топлива, которое двигатель преобразует в механическую энергию, работу. Термическая эффективность, с точки зрения непрофессионала, - это процент топлива, которое двигатель использует, чтобы толкать автомобиль по дороге.

Формула теплового КПД проста. Формула теплового КПД - это количество тепла, выделяемого двигателем, деленное на количество тепла - опять же в виде топлива - затраченного на двигатель. Чем ближе две температуры, тем выше термический КПД двигателя. Если температура сжатого воздуха или топливовоздушной смеси в цилиндре такая же, как температура сгорания топлива и воздуха, тепловой КПД составляет 100 процентов.

Теоретически, сжатие воздуха или топливовоздушной смеси до тех пор, пока выделяемое тепло не сравняется с температурой сгорания топливовоздушной смеси, было бы идеальным.Однако это невозможно.

Пределы степени сжатия

Повышение степени сжатия конструкции двигателя невозможно сверх определенной степени. Инженеры могут сделать степень сжатия дизельного двигателя намного выше, чем у бензинового. Причина в том, что в цилиндре дизельного двигателя воздух находится только при подъеме поршня. Дизельное топливо впрыскивается в цилиндр, когда поршень достигает верхней точки своего хода. После впрыска дизельное топливо автоматически воспламеняется, и давление, создаваемое при сгорании дизельного топлива, толкает поршень обратно вниз, что приводит к вращению коленчатого вала.

Цилиндры бензиновых двигателей с искровым зажиганием, с другой стороны, заполняются воздушно-бензиновой смесью в конце поршневого цикла. Итак, когда поршень начинает подниматься, тепло, выделяемое при сжатии воздуха - в определенный момент - вызывает самовоспламенение бензина в топливовоздушной смеси.

Самовоспламенение в бензиновом двигателе - катастрофическое событие. Самовоспламенение, также известное как предварительное зажигание, не следует путать с детонацией. Детонация - это когда карманы топливовоздушной смеси в цилиндре воспламеняются в разное время.Детонация вызывает свистящий звук, поэтому детонацию часто называют «стуком». Самовоспламенение полностью отличается от детонации. Детонация происходит при нижнем ходе поршневого цикла. Самовоспламенение происходит при движении вверх. Нет звука, связанного с самовоспламенением. Двигатель просто взрывается. Самовоспламенение разрушает головки поршней и штоки, разрушает кольца и уплотнения и даже может выдуть свечи зажигания сбоку двигателя.

Для предотвращения самовоспламенения в двигателе с искровым зажиганием - для предотвращения воспламенения бензина в топливовоздушной смеси в результате тепла, выделяемого при сжатии поршнем смеси внутри цилиндра, - инженеры должны поддерживать степень сжатия между 8: 1 и 12: 1.

Но, поскольку дизельное топливо подается в цилиндр компрессионного двигателя в конце поршневого цикла - в верхней мертвой точке - в отличие от начала поршневого цикла, поскольку топливо находится в двигателе с искровым зажиганием, степень сжатия составляет дизельные двигатели могут быть намного выше: от 14: 1 до 25: 1. Это означает, что температура внутри дизельного двигателя становится намного выше, чем у бензинового двигателя, что означает, что температура на входе и температура на выходе ближе. Таким образом, дизельные двигатели обладают гораздо более высокой термической эффективностью, чем бензиновые.

Термический КПД, наряду с плотностью топлива, определяет топливный КПД двигателя. Дизельные двигатели более экономичны, чем бензиновые, потому что они более термически эффективны и потому что дизельное топливо является более плотным топливом. Дизельные двигатели имеют более высокий тепловой КПД, чем бензиновые, потому что у дизельных двигателей более высокая степень сжатия. Дизельные двигатели могут иметь более высокую степень сжатия, потому что двигатели сжатия впрыскивают топливо в цилиндр двигателя в конце поршневого цикла.

Плотность топлива и топливная эффективность

Даже без большей степени сжатия, ведущей к более высокому тепловому КПД, дизельные двигатели все равно будут значительно более экономичными. Дизельные двигатели, естественно, более экономичны, поскольку дизельное топливо имеет более высокую плотность, чем бензин. В то время как дизельное топливо и бензин имеют одинаковую плотность энергии - равную сумму энергии при измерении по весу, - дизельное топливо имеет больше энергии при измерении по объему. А жидкое ископаемое топливо продается в единицах измерения объема, галлонах или литрах.

«Теплотворная способность дизельного топлива составляет примерно 45,5 МДж / кг (мегаджоули на килограмм), что немного ниже, чем у бензина, который составляет 45,8 МДж / кг. Однако дизельное топливо плотнее бензина и содержит примерно на 15% больше энергии по объему (примерно 36,9 МДж / литр по сравнению с 33,7 МДж / литр). С учетом разницы в плотности энергии общий КПД дизельного двигателя по-прежнему примерно на 20% выше, чем у бензинового, несмотря на то, что дизельный двигатель также тяжелее ».

Только из-за плотности топлива дизельный двигатель проезжает пять (5) миль на каждые четыре (4) мили бензинового двигателя сопоставимого размера.

«Газовый» пробег - и причина того, что дизельные двигатели более экономичны, чем бензиновые - является результатом теплового КПД, а тепловой КПД - производным степени сжатия. Тепловой КПД и степень сжатия в сочетании с плотностью топлива являются причиной того, что дизельный двигатель имеет на 25-35 процентов большую экономию топлива, чем бензиновый двигатель.

Степень сжатия - обзор

Степень сжатия обычно варьируется от 1,05 до 7 на ступень; однако коэффициент 3.5–4,0 на стадию считается максимальным для большинства технологических операций. Довольно часто повышение температуры газа во время сжатия диктует предел безопасного или разумного повышения давления. Максимальное повышение температуры определяется либо максимальной рабочей температурой цилиндра компрессора, либо максимальной температурой, которую газ может выдержать перед разложением, полимеризацией или даже самовоспламенением, как для хлора, ацетилена и т. Д. увеличение степени сжатия, это также добавляет к выбору разумного предельного давления нагнетания.При известной максимальной температуре максимальная степень сжатия может быть рассчитана из соотношения повышения адиабатической температуры.

Оптимальная минимальная мощность достигается при одинаковой степени сжатия во всех цилиндрах для многоступенчатых агрегатов. При внешнем охлаждении газа между ступенями необходимо делать разумные поправки на перепады давления в промежуточных охладителях и учитывать это при настройке степеней сжатия:

Фактическая (с промежуточным охлаждением)

(18-38) Pi1 / P1 = Pi2 / Pi1 ′ = Pi3 / Pi2 ′ =… Pfy / Piy

где 1,2,3 ,.… Y = состояние газа в цилиндре, представленное (1) для первой ступени, (2) для второй ступени и т. Д.

i = состояние межступенчатого давления нагнетания, непосредственно в цилиндре.

Prime (') = состояние межкаскадного нагнетания, уменьшенное за счет падения давления в промежуточных охладителях, клапанах, трубопроводах и т.д .; следовательно, штрих представляет собой фактическое давление на всасывании следующего цилиндра в многоступенчатой ​​цилиндровой системе.

f = конечное давление или давление на выходе из многоступенчатой ​​установки.

Степени сжатия по ступеням:

R1 = Pi1 / P1R2 = Pi2 / Pi1′R3 = Pi3 / Pi2′Rf = Pfy / Piy ′

(18-39) R1 = R2 = R3 = ... Rf = yRt

, где R t = общая степень сжатия агрегата = P i / P 1

Для двухступенчатого сжатия на ступень:

(18-39A) R1 = R2 = Pf2 / P1

Для пяти ступеней:

(18-39B) R1 = R2 = R3 = R4 = R5 = 5Pf5 / P1

Обычно на многоступенчатых машинах используются промежуточные охладители.Функция промежуточного охладителя заключается в охлаждении газа до максимально близкой к исходной температуре всасывания с минимально возможным падением давления. Это важно для термочувствительных материалов. Это охлаждение приводит к экономии требуемой тормозной мощности, так как по существу происходит охлаждение при постоянном давлении и приводит к тому, что следующий цилиндр обрабатывает меньший объем газа. Для достижения наибольшей экономии следует использовать самое холодное охлаждение, доступное на практике.

В некоторых случаях желательно использовать двухступенчатое сжатие без промежуточного охлаждения.Если состав газа должен оставаться постоянным на протяжении всего процесса сжатия, а температура не ограничивается, промежуточные охладители нельзя использовать, если присутствуют конденсируемые вещества. Иногда для газов с низким значением «k» или «n» используются две ступени, чтобы повысить объемный КПД. Когда это так, и высокие температуры сжатия или экономичность работы не контролируются, может быть выгодно отказаться от промежуточного охладителя.

Обратите внимание, что, когда промежуточные охладители не используются, температура воды в рубашке компрессора должна быть на 10–15 ° F выше, чем точка росы между ступенями.Для этого на предыдущем этапе потребуется теплая вода из куртки.

Работа промежуточного охладителя внешне не влияет на теоретическую оптимальную степень сжатия на ступень. Однако это влияет на совокупную мощность, необходимую для выполнения работы по полному сжатию, потому что все потерянные потери давления должны быть заменены на мощность в лошадиных силах. Также имеется выигрыш в производительности за счет этого промежуточного охлаждения, как показано на рисунках 18-17A и 18-17B. Поправка на падение давления в промежуточном охладителе обычно делается путем увеличения давления на выходе из цилиндра, чтобы включить половину падения давления в промежуточном охладителе между ступенями, а давление всасывания на следующей ступени уменьшается до другой половины падения давления. по сравнению с теоретическим давлением без учета перепада давления.

Рисунок 18-17а. Комбинированные индикаторные карты двухступенчатого компрессора, показывающие, как водяные рубашки цилиндра и промежуточный охладитель помогают приблизить линию сжатия к изотермической.

(Использовано и адаптировано с разрешения: Миллер, Х. Х. Пауэр, © 1994. McGraw-Hill, Inc., Нью-Йорк. Все права защищены.)

Рисунок 18-17b. Влияние объема зазора на КПД цилиндра поршневого компрессора (эффект конструкции клапана).

(Использовано с разрешения: Livingston, E.H. Chemical Engineering Progress, V.89, № 2, © 1993. Американский институт инженеров-химиков, Inc. Все права защищены.)

Можно рассчитать степень сжатия на ступень.

(18-40) Pf = P1Rγ− (Δp1) Rγ − 1− (Δp2) Rγ − 2− (Δp3) Rγ − 3− (Δp4) Rγ − 4…

Продолжайте, чтобы увидеть количество членов в правой части уравнение, равное количеству ступеней. Обычно это лучше всего решается методом проб и ошибок, и его можно упростить, если предположить, что большинство значений ΔP равны. Предполагается, что весь перепад давления в промежуточном охладителе вычитается из давления всасывания следующей ступени, т.е.е. Падение давления в промежуточном охладителе первой ступени вычитается из давления всасывания второй ступени.

P f = конечное давление многоступенчатого набора цилиндров

γ = количество ступеней сжатия

Δp = падение давления на межкаскадных охладителях, фунт / кв. Дюйм

1 = первая ступень

2 = вторая ступень

Если половина Δp добавляется к разряду одной ступени и половина вычитается из всасывания следующей ступени:

(18-41) Pf = P1Rγ− (12Δp1) Rγ − 1− (12Δp2) Rγ − 2− (12Δp3) Rγ − 3− (12Δp4) Rγ − 4…

На практике соотношения для каждой ступени могут не совпадать; однако это не мешает компрессору работать удовлетворительно, если все другие факторы учитываются соответствующим образом.

Охлаждение рубашки компрессора. Вода для охлаждения рубашки компрессора не должна быть такой же теплой, как вода в рубашке газового двигателя. Вода на 15–20 ° F более теплая, чем точка росы сжимаемого газа, предохраняет от конденсации. Рекомендуется повышение температуры воды в рубашке максимум на 15–20 ° F. Никогда не следует ограничивать поток воды к рубашкам, чтобы поддерживать эту температуру, поскольку пониженная скорость имеет тенденцию способствовать загрязнению рубашек.

Количество тепла, отводимого рубашками компрессора, зависит от размера и типа машины.Этот отвод тепла обычно выражается в британских тепловых единицах / час / л.с. Отвод тепла в цилиндр компрессора составляет в среднем около 500 БТЕ / ч / л.с. Некоторые из них имеют низкий уровень 130, и необходимо уточнить у производителя, чтобы получить точную цифру.

Пример 18-1

Межступенчатое давление и степени сжатия

Каким должно быть давление в цилиндрах для двух ступеней сжатия, если перепад давления в промежуточном охладителе и трубопроводе составляет 3 фунта на квадратный дюйм?

Всасывание до первой ступени: P 1 = 0 фунтов на кв. Дюйм (14.7 psia)

Нагнетание со второй ступени: P f2 = 150 psig (164,7 psia)

Perstage: Rc = 164,7 / 14,7 = 11,2 = 3,35

Без промежуточного охлаждения:

С промежуточным охлаждением:

Первая ступень:

Вторая ступень:

Пример показывает, что, хотя отношения на цилиндр сбалансированы, каждое из них больше теоретического. Это соответствует реальным операциям.

Важно отметить, что довольно часто фактическая степень сжатия для отдельных цилиндров многоступенчатой ​​машины не может быть точно сбалансирована.Это состояние возникает в результате ограничения потребляемой мощности в лошадиных силах для определенных размеров и конструкций цилиндров, установленных производителем. В окончательном выборе они будут скорректированы, чтобы обеспечить максимально возможные степени сжатия для использования стандартных конструкций.

Дизельные двигатели - Engineer-Educators.com

Дизельный двигатель похож на бензиновый двигатель, используемый в большинстве автомобилей. Оба двигателя являются двигателями внутреннего сгорания, то есть сжигают топливно-воздушную смесь в цилиндрах. Оба являются поршневыми двигателями, приводимыми в движение поршнями, перемещающимися в двух направлениях в поперечном направлении.Большинство их частей похожи. Хотя дизельный двигатель и бензиновый двигатель работают с одинаковыми компонентами, дизельный двигатель, по сравнению с бензиновым двигателем равной мощности, тяжелее из-за более прочных и тяжелых материалов, используемых для противодействия большим динамическим силам от более высокого давления сгорания, присутствующего в дизельном топливе. двигатель.

Более высокое давление сгорания является результатом более высокой степени сжатия, используемой в дизельных двигателях. Степень сжатия - это мера того, насколько двигатель сжимает газы в цилиндре двигателя.В бензиновом двигателе степень сжатия (которая контролирует температуру сжатия) ограничена воздушно-топливной смесью, поступающей в цилиндры. Более низкая температура воспламенения бензина приведет к его воспламенению (горению) при степени сжатия менее 10: 1. У среднего автомобиля степень сжатия 7: 1. В дизельном двигателе обычно используются степени сжатия от 14: 1 до 24: 1. Возможны более высокие степени сжатия, потому что сжимается только воздух, а затем впрыскивается топливо.Это один из факторов, который позволяет дизельному двигателю быть таким эффективным. Степень сжатия будет обсуждаться более подробно позже в этом модуле.

Еще одно различие между бензиновым двигателем и дизельным двигателем заключается в способе управления частотой вращения двигателя. В любом двигателе скорость (или мощность) напрямую зависит от количества топлива, сожженного в цилиндрах. Бензиновые двигатели имеют автоматическое ограничение скорости из-за метода, который двигатель использует для управления количеством воздуха, поступающего в двигатель.Частота вращения двигателя косвенно регулируется дроссельной заслонкой в ​​карбюраторе. Дроссельная заслонка в карбюраторе ограничивает количество воздуха, поступающего в двигатель. В карбюраторе скорость воздушного потока определяет количество бензина, которое будет смешано с воздухом. Ограничение количества воздуха, поступающего в двигатель, ограничивает количество топлива, поступающего в двигатель, и, следовательно, ограничивает скорость двигателя. Ограничивая количество воздуха, поступающего в двигатель, добавление большего количества топлива не увеличивает частоту вращения двигателя сверх точки, в которой топливо сжигает 100% доступного воздуха (кислорода).

Дизельные двигатели не имеют автоматического ограничения скорости, поскольку количество воздуха (кислорода), поступающего в двигатель, всегда является максимальным. Следовательно, частота вращения двигателя ограничивается исключительно количеством топлива, впрыскиваемого в цилиндры двигателя. Следовательно, в двигателе всегда имеется достаточно кислорода для сгорания, и двигатель будет пытаться разогнаться, чтобы соответствовать новой скорости впрыска топлива. Из-за этого ручное управление подачей топлива невозможно, поскольку эти двигатели в ненагруженном состоянии могут ускоряться со скоростью более 2000 оборотов в секунду.Дизельным двигателям требуется ограничитель скорости, обычно называемый регулятором, для контроля количества топлива, впрыскиваемого в двигатель.

В отличие от бензинового двигателя, дизельный двигатель не требует системы зажигания, потому что в дизельном двигателе топливо впрыскивается в цилиндр, когда поршень достигает вершины своего такта сжатия. Когда топливо впрыскивается, оно испаряется и воспламеняется из-за тепла, создаваемого сжатием воздуха в цилиндре.

Нульмерное моделирование четырехцилиндрового дизельного двигателя с турбонаддувом с переменной степенью сжатия и его влияние на выбросы

Результаты моделирования установившегося режима

Результаты установившегося состояния показаны ниже.Карта показывает разницу между данными моделирования и данных измерений (измерение-имитация), где зеленый цвет преобладает над моделью для точной работы:

$$ {\ text {z-axis}} = {\ text {Measurement}} \ ; {\ text {Result}} - {\ text {Simulation}} \; {\ text {Result}} $$

Как видно на рис. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 и 18, разница между результатами, полученными при моделировании модели в стационарном состоянии, и данными измерений незначительна для большинства регионов. карты.Это указывает на то, что охарактеризованная числовая модель работает очень похоже на реальный двигатель.

Рис.7

Разница тормозного момента

Рис.8

Разница в массовом расходе всасываемого воздуха

Рис.9

Разница в выбросе NOx из двигателя

Рис.10

Разница в среднем эффективном давлении тормозов

Рис.11

Разница в удельном расходе топлива на тормоз

Рис.12

Разница во впускном давлении

Фиг.13

Разница давления наддува

Рис.14

Разница давлений во впускном коллекторе

Рис.15

Разница в давлении на выходе из двигателя

Рис.16

Разница в температуре наддува

Рис.17

Разница температур на впускном коллекторе

Рис.18

Разница температур в выпускном коллекторе двигателя

VCR Имитационное исследование было проведено после проверки правильности работы числовой модели двигателя без обратной связи.

Результаты численной модели с видеомагнитофоном

Стратегия реализации видеомагнитофона в числовой модели

Все карты двигателя даны с точки зрения оборотов по оси x, крутящего момента по оси y и процентного изменения по оси z. Основная стратегия, примененная к модели, заключалась в том, чтобы поддерживать постоянный крутящий момент и частоту вращения в соответствии с рабочей картой CR16.5. При разных степенях сжатия ожидалось, что крутящий момент будет увеличиваться или уменьшаться для одного и того же количества топлива, поэтому может произойти сдвиг всей карты, что может усложнить и затруднить сравнение графиков.Таким образом, такой же заданный крутящий момент был достигнут путем подключения ПИД-регулятора для управления количеством топлива.

Для разных степеней сжатия, когда количество топлива изменяется для достижения тех же рабочих условий, массовый расход всасываемого воздуха также изменяется, в то время как положение клапана рециркуляции отработавших газов остается неизменным, что приводит к изменению отношения впускного воздуха к рециркуляции отработавших газов для конкретной уставки. . Для более точного изучения изменений NOx процент массового расхода EGR в каждой точке регистрации сохранялся таким же, как и исходные данные CR16.5 по следующей формуле:

$$ MF_ {EGR} = \ frac {{MF_ {EGR}}} {{MF_ {IA} + MF_ {EGR}}} \ times 100 \% $$

(4)

График процентного содержания EGR в общем массовом расходе, взятом из CR16.5, показан на рис. 19.

Рис. 19

Массовый расход EGR в процентах по сравнению с общим массовым расходом

Результаты рассчитываются как процент увеличения или уменьшения по сравнению с CR16.5:

$$ Результат = \ frac {Новый CR - CR16.5} {CR16.5} $$

(5)

Массовый расход топлива

Как объяснялось ранее, крутящий момент поддерживался постоянным при каждой уставке за счет изменения количества топлива с помощью ПИД-регулятора.

По мере увеличения степени сжатия крутящий момент, создаваемый для того же количества топлива, также увеличивался, таким образом, PID уменьшал крутящий момент до исходной точки за счет уменьшения количества топлива.

Обратное можно увидеть, когда степень сжатия была уменьшена из-за того, что для получения того же заданного крутящего момента требовалось больше топлива.На рисунке 20 показано уменьшение количества топлива при увеличении степени сжатия и увеличение количества топлива при уменьшении степени сжатия.

Рис.20

Массовый расход топлива по сравнению с CR16.5

Удельный расход топлива тормозом

Цифры, показанные на рис. 21, показывают процентное изменение значений удельного расхода топлива тормозом при различных степенях сжатия по сравнению со степенью сжатия 16,5. Можно ясно видеть, что BSFC увеличивается при уменьшении степени сжатия и уменьшается при увеличении степени сжатия.

Рис.21

Удельный расход топлива тормоза по сравнению с CR16.5

Эффект от этого изменения проявляется в большей степени в условиях низкой нагрузки и низких оборотов в минуту, и эта тенденция уменьшается в условиях высоких нагрузок и высоких оборотов.

Массовый расход всасываемого воздуха

Как показано на рис. 20, уменьшение степени сжатия приводит к увеличению массового расхода топлива для достижения того же заданного крутящего момента. Поскольку массовый расход топлива увеличивается, это также увеличивает массовый расход всасываемого воздуха, как показано на рис.22, когда степень сжатия уменьшается. Обратное явление наблюдается при увеличении степени сжатия.

Рис.22

Массовый расход всасываемого воздуха по сравнению с CR16.5

Тепловой КПД

Цифры, показанные на рис. 23, показывают процентное изменение значений теплового КПД при различных степенях сжатия по сравнению со степенью сжатия 16,5. Тепловой КПД:

$$ \ eta_ {t} = \ frac {{W_ {c}}} {{m_ {f} Q_ {HV}}} = \ frac {{P_ {s}}} {{\ mu_ {f} Q_ {HV}}} $$

(6)

, где W c - работа за цикл, P s - выходная мощность, m f - масса топлива за цикл, QHV - теплотворная способность топлива и µ f - массовый расход топлива.

Рис.23

Тепловой КПД по сравнению с CR16.5

Q HV для дизельного топлива составляет 43,5 МДж / кг, поэтому уравнение (6) можно записать как:

$$ \ eta_ {t} = \ frac {1} {{Sfc \ cdot Q_ {HV}}} = \ frac {3600} {{Sfc \, ({\ text { g}} / {\ text {kW}} \, {\ text {h}}) Q_ {HV} \, ({\ text {MJ}} / {\ text {kg}})}} = \ frac { 82.76} {Sfc} $$

(7)

Сопоставление обратной пропорциональности формулы, показанной выше, и тенденции, показанной в значениях BSFC на рис.23 ясно видно, что термический КПД увеличивается с увеличением степени сжатия и уменьшается с уменьшением степени сжатия.

Это изменение более заметно в условиях низкой нагрузки и низких оборотов и становится менее заметным в условиях высоких нагрузок и высоких оборотов.

NOx

На рисунке 24 показано, что с увеличением степени сжатия происходит уменьшение NOx и наоборот.

Рис. 24

NOx на выходе из двигателя по сравнению с CR16.5

Это явление основано на том факте, что более высокая степень сжатия означает более полное сгорание, и в сочетании с наблюдением на рис. 20 требуется меньше топлива для достижения того же крутящего момента, что означает меньшее количество тепловой энергии, что в конечном итоге приведет к при более низкой температуре; снижение производства NOx.

Эффект более заметен при низкой нагрузке и низких оборотах, в то время как некоторые из его заметных особенностей также можно увидеть при высоких значениях крутящего момента и низких оборотах.

Механический КПД

На рисунке 25 показано, что с увеличением степени сжатия происходит небольшое снижение механического КПД двигателя.Обратное наблюдается при уменьшении степени сжатия. Хотя процентное изменение очень мало, ME уменьшается, потому что по мере увеличения CR потери на трение механических компонентов вместе с некоторыми насосными потерями также увеличиваются (особенно в областях с низким крутящим моментом). В конечном итоге это немного влияет на общий механический КПД двигателя.

Рис.25

Механический КПД по сравнению с CR16.5

Co
2

Из рис.26, количество произведенного CO 2 обратно пропорционально степени сжатия. Влияние этого изменения степени сжатия на выбросы в значительной степени происходит при низких значениях крутящего момента и низких оборотах. Это связано с тем, что при низком крутящем моменте и низких оборотах воздушно-топливная смесь (небольшое количество по сравнению с высоким крутящим моментом и высокими оборотами в минуту) в цилиндре не сжимается однородно и сгорает в цилиндре, что приводит к плохому сгоранию.

Рис. 26

Объем двигателя CO 2 по сравнению с CR16.5

Сажа

На рис. 27 показано влияние степени сжатия на процентное изменение сажи. С увеличением степени сжатия сажа увеличивалась с очень резкой скоростью по всей карте, за исключением условий работы с низким крутящим моментом и низкой частотой вращения (где наблюдалось ее уменьшение). Это связано с тем, что в условиях высокого крутящего момента и высоких оборотов количество воздуха, необходимое для более полного сгорания, было меньше количества, потребляемого двигателем. Таким образом, нагнетатель может быть подходящим решением для увеличения количества воздуха в цилиндре в условиях высокой нагрузки для уменьшения образования сажи.

Рис.27

Сажа на выходе из двигателя по сравнению с CR16.5

Температура на выходе из двигателя

Температура выхлопных газов цилиндра прямо пропорциональна количеству сгорания. Сгорание, в свою очередь, напрямую связано с количеством впрыскиваемого топлива; больше топлива означало бы большее сгорание, ведущее к большему выделению тепловой энергии. Следовательно, как показано на рис. 20, увеличение степени сжатия снижает расход топлива для достижения того же крутящего момента, что приводит к снижению температуры выхлопных газов, как показано на рис.28.

Рис. 28

Температура на выходе из двигателя по сравнению с CR16.5

Давление на выходе из двигателя

На ранней стадии проектирования двигателя всегда учитывается и изучается разность давлений между впускным и выпускным коллекторами двигателя, чтобы убедиться, что она остается в пределах приемлемого порогового значения.

Большая разница может привести к неисправности различных компонентов двигателя. Например, если разница слишком велика, небольшое открытие клапана рециркуляции ОГ может привести к тому, что мимо него пройдет массивный поток воздуха, что в конечном итоге может привести к неисправности управления воздушным потоком.

На рис. 29 показано, что увеличение степени сжатия снижает давление выхлопных газов из-за того, что при увеличении степени сжатия сжигается меньше топлива для достижения тех же рабочих условий на всей карте.

Рис.29

Давление на выходе из двигателя по сравнению с CR16.5

Сводка результатов по зонам

Карта двигателя была разделена на три зоны (как показано на рис. 30):

Рис. 30
  • Зона 1 - зона низких нагрузок от низких до нормальных рабочих значений частоты вращения;

  • Зона 2, охватывающая зону средней нагрузки от нормальных до высоких значений рабочих оборотов;

  • Зона 3: зона высоких нагрузок (включая номинальную мощность) с очень высокими значениями частоты вращения

Как видно из рис.31, тепловой КПД в зонах высоких нагрузок в Зоне 2 и Зоне 3 составляет примерно 40%.

Рис.31

Тепловой КПД при CR16,5

Высокая степень сжатия в этих зонах увеличивает ее только на 0,71% и 0,30% для CR18 и на 1,57% и 0,40% для CR20. Таким образом, это изменение не так сильно, как можно наблюдать в условиях низкой нагрузки, когда нормальный тепловой КПД составлял около 25% и увеличивался на 9,70% при CR20.

Сводку процентных изменений значений в трех различных зонах можно увидеть на рис.32, 33 и 34.

Рис. 32

Среднее процентное изменение в зоне 1 по сравнению с CR16,5

Рис.33

Среднее процентное изменение в зоне 2 по сравнению с CR16,5

Рис. 34

Среднее процентное изменение в Зоне 3 по сравнению с CR16,5

BSFC уменьшается на 8,14%, 1,54% и 0,37% в зоне 1, 2 и 3 соответственно при степени сжатия 20. Наблюдая за изменениями выбросов при той же уставке, можно увидеть, что NOx уменьшается на 8,33%, CO 2 на 8.50%, а количество сажи увеличивается на 6,91%. Это ясно указывает на то, что более высокая степень сжатия должна быть предпочтительнее в Зоне 1.

Наблюдение за значениями сажи и BSFC с CR20 в Зоне 2 и 3 ясно указывает на то, что это нежелательно в качестве хорошего компромисса. Значения сажи ясно указывают на то, что низкая степень сжатия предпочтительна для зоны 2 и 3. Для плавного перехода между зоной 1 и 2 степень сжатия ниже 18 для зоны 2 может привести к внезапному рывку двигателя. Имея это в виду, для Зоны 2 предпочтительна степень сжатия 18.

Переход степеней сжатия между зонами всегда поддерживается как можно более плавным, чтобы избежать внезапного нежелательного поведения двигателя.

Наконец, чтобы не отставать от тенденции к плавности и избежать дальнейшего снижения производительности, в Зоне 3 предпочтительна степень сжатия 16,5 по умолчанию.

Почему у дизельных двигателей более высокая степень сжатия? Тайна не раскрыта

Цукаса Азума

Последнее обновление 4 февраля 2021 г.

0 комментариев

Коэффициент сгорания является важным фактором, определяющим поведение любого двигателя.Это оценка способности цилиндра двигателя сжать топливо и воздух. Различные двигатели, такие как бензиновый и дизельный, имеют разную степень сжатия. Однако передаточное число дизельного двигателя сравнительно выше. Почему у дизельных двигателей более высокая степень сжатия? Этот вопрос должен поразить вас, и вы получите ответ на него прямо сейчас.

Итак, давайте узнаем вместе!

Почему у дизельных двигателей более высокая степень сжатия - основные причины проверить!

Ниже мы перечислили основные причины, по которым дизельный двигатель имеет более высокую степень сжатия, чем любой другой двигатель.Так что проверьте это!

1. В зависимости от приложения

Дизельные двигатели идеально подходят для тяжелых транспортных средств, таких как локомотивы, корабли, грузовики и другие гигантские автомобили. Следовательно, он имеет более высокий крутящий момент. Чтобы включить такой большой автомобиль, требуется большое количество энергии, что в конечном итоге приводит к увеличению скорости сгорания. Сжатие воздуха - это процесс, который происходит в большом цилиндре внутри двигателя. Следовательно, топливо также быстро сгорает. Он производит больше мощности внутри двигателя, что в конечном итоге приводит к более высокой степени сжатия.Следовательно, размер цилиндра двигателя и, конечно же, область применения являются причиной более высокой степени сжатия дизельных двигателей.

Основные причины, по которым у дизельных двигателей более высокая степень сжатия (Источник фото: everypixel)

СМОТРЕТЬ БОЛЬШЕ:

2. Уклонение от стука

Детонация - серьезная проблема для двигателей. Это случается, когда в цилиндре двигателя происходит ненормальное сгорание. Проблема детонации обычно чаще встречается в бензиновых двигателях.По мере увеличения степени сжатия бензиновый двигатель выходит из строя, поэтому многие люди не считают его идеальным двигателем сжатия. Возвращаясь к дизельному двигателю, детонации нет. Больший размер цилиндра обеспечивает достаточно места для вашего топлива, чтобы работать и сгорать внутри двигателя.

Основные причины, по которым двигатель может вызывать детонацию, включают:

  • Задержка зажигания внутри форсунок

  • Повышенная температура внутри двигателя

  • Когда топливная форсунка не может полностью воспламенить топливо

Следовательно, чтобы избежать детонации в двигателе, дизельный двигатель имеет максимальную степень сжатия.

>> Купить подержанный автомобиль у надежных японских продавцов можно здесь <<

3. Свеча зажигания

Бензиновые или бензиновые двигатели требуют свечи зажигания для сжигания топлива. Дизельному двигателю не нужна свеча зажигания для выработки энергии, вместо этого достаточно высокой степени сжатия, чтобы зажечь топливо. Для самовоспламенения двигателя; требуется более высокая степень сжатия. Кроме того, дизель очень летуч, и для воспламенения топлива достаточно только сжатия воздуха. Таким образом, чтобы предотвратить возгорание двигателя или другие опасности, дизельный двигатель сконструирован таким образом, что он имеет повышенную степень сжатия.Кроме того, чтобы решить любую неожиданную проблему с дизельным двигателем, вы можете получить несколько полезных советов по обслуживанию от экспертов.

Объяснение, почему у дизельных двигателей более высокая степень сжатия (Источник фото: dailydriven)

Заключение

Поэтому всякий раз, когда вы думаете о том, почему у дизельных двигателей более высокая степень сжатия, запомните эту полезную информацию и выберите двигатель по своему желанию.