Расточка двигателя: Расточка и хонингование блока цилиндров двигателя

Компания Механика - Расточка блока цилиндров

Расточка блока цилиндров – операция перед хонингованием

(фото: расточка блока цилиндров) 

Когда необходим капитальный ремонт двигателя

Итак, расточка блока цилиндров. Эта операция входит в технологическую цепочку капитального ремонта двигателя.

А когда он требуется – капитальный ремонт? О тревожных симптомах мы писали в статье «Хонингование – операция финишная и… самостоятельная». Но следуя логике изложения, напомним о них.

Итак, снижение мощности, падение компрессии, увеличение расхода масла, характерный запах и цвет отработавших газов – все это признаки износа цилиндропоршневой группы. И самое правильное для водителя – прервать эксплуатацию и обратиться к профессиональным ремонтникам, например, в фирму «Механика».

А дальше – квалифицированная диагностика состояния цилиндров, поскольку простая замена поршневых колец, которую предложат на многих сервисах, вряд ли поможет. Нет, нужны замеры, замеры и еще раз замеры!

Снять металл

В зависимости от их результата специалисты «Механики» предложат три варианта:

  • только хонингование как основную и одновременно финишную операцию;
  • расточка цилиндров в ремонтный размер с последующим финишным хонингованием;
  • гильзовка с финишным хонингованием, если последний ремонтный размер уже выбран предыдущей расточкой.

Вариант №2, т.е. расточка в ремонтный размер с финишным хонингованием, является самым распространенным.

(фото: финишное хонингование)

Суть операции в следующем. Вертикальный шпиндель расточного станка с закрепленным резцом вращается и опускается вглубь цилиндра. Резец снимает лишний металл с зеркала, устраняет эллипсность, конусность и ступеньку выработки вблизи верхней мертвой точки поршня (ВМТ).

Важно, что резец, в отличие от хона, закреплен в шпинделе жестко. И если хон при обработке «плавает», волей-неволей повторяя конфигурацию внутренней поверхности цилиндра, то резец совершает рабочий ход строго по вертикали.

Именно этот фактор позволяет выставить инструмент таким образом, чтобы убрать эллипсность, а точнее, яйцеобразную форму изношенного цилиндра. И тем самым восстановить его геометрию – разумеется, уже в ремонтном размере. Кстати, одним только хоном убрать эллипс можно, а вот более причудливые бочкообразные износы – нет.

Казалось бы, операция расточки проста. На деле эта «простота» требует точного оборудования и высочайшей квалификации исполнителя. Об этом далее. 

Расточка блока цилиндров в цифрах

Сколько металла снимается при расточке? Правильнее поставить вопрос так: сколько ремонтных размеров существует в современных моторах? Как правило, их два: 0,5 мм и 1 мм от номинала. Встречаются и исключения – 0,25 мм, например. Но это редко.

В компании «Механика» нам рассказали любопытные случаи. Не так давно были популярны пяти- и шестицилиндровые моторы Volvo. И производитель выпускал для них ремонтные поршни 0,2 и 0,4 мм.

Первый размер был никому не нужен – ну прямо как Неуловимый Джо. Почему? А потому что при износе 0,2 мм все продолжали благополучно ездить. А на размер 0,4 мм выходили редко, приезжая на ремонт, как правило, с износом более 0,5 мм. Но ремонтных поршней под этот износ у Volvo не было, поэтому двигатели приходилось гильзовать. Так что опыт у «Механики», прямо скажем, разнообразный.

(фото: расточка цилиндров)

База под расточку: плоскость

В металлообработке едва ли не самое главное – базирование детали. Это важно и в токарном, и во фрезерном деле, и, конечно же, в специальных операциях по ремонту двигателя. Правильно выбранная база – это гарантия соосности, перпендикулярности и параллельности различных элементов детали при обработке. В нашем случае это обеспечение перпендикулярности осей цилиндров и коленчатого вала.

Рядные блоки, как правило, предварительно базируют по плоскости масляного поддона картера. Важно, чтобы эта поверхность была хорошо очищена, остатки прокладки здесь недопустимы.

После установки блока смотрят: а как расположена плоскость головки блока цилиндров (ГБЦ)? Дело в том, что она не всегда параллельна плоскости поддона картера. С помощью щупов и индикатора «выставляется горизонт» плоскости ГБЦ, то есть ее положение в продольном и поперечном направлениях.

Далее блок фиксируется специальными зажимами, мастер с помощью центроискателя выставляет резец на необходимую величину съема и запускает станок.

Если производится ремонт 0,5 мм (от номинала или от первого ремонтного размера), то расточка проводится за один проход. Если по каким-то причинам выполняется ремонт «через размер», то делается два прохода инструмента.

Подача резца автоматическая, и на обработку четырех цилиндров уходит порядка часа.

База под расточку: скалка

Бывает, что привозят рядные блоки, которые уже однажды ремонтировали – когда-то, где-то, у кого-то. И базировали их просто по плоскости масляного поддона, не обеспечивая перпендикулярности осей цилиндров и коленчатого вала.

В этом случае для качественного ремонта требуется базировать блок по постелям коленчатого вала. Да клиент и сам часто просит: сделайте по постелям. Особенно если понимает суть вопроса, являясь, например, спортсменом-гонщиком.

В этом случае для базирования используется скалка – шлифованный металлический стержень, установленный на призмы.

Скалка имитирует коренные шейки коленчатого вала. Выставлять блок в продольном направлении не требуется – только в поперечном, что и делается с помощью индикатора. Далее проводится расточка, гарантирующая перпендикулярность осей цилиндров и «колена».

Но заметьте – до сих пор мы говорили о рядных моторах. А блоки V-образные? Сразу скажем, что их базируют только по постелям коленвала на скалке –иначе сделать это невозможно.

После расточки блока в той же базе (на скалке!) обрабатывают плоскости ГБЦ. Тем самым обеспечивают параллельность этих плоскостей оси коленчатого вала. Кстати, об этом рассказывает руководитель «Механики» Дмитрий Николаевич Даньшов в ролике https://www.youtube.com/watch?v=MJY1PgZfnBA Советуем посмотреть.

Не оставим без внимания и оппозитные двигатели Subaru. Как растачивают их? А вот как: попарно. Сначала один полублок, потом другой.

И в заключение этого раздела подчеркнем особо: при расточке обязательно оставляется припуск на хонингование. Эта финишная операция выполняется всегда!

Преимущества «Механики»

Почему с ремонтом блока (и не только блока) стоит обращаться в компанию «Механика»? Основные аргументы приведены в уже упоминавшейся статье «Хонингование – операция финишная и… самостоятельная» – с ними легко ознакомиться. Мы же сделаем несколько добавлений.

Нельзя не упомянуть тщательность подготовки блока к ремонту. Его скрупулезно очищают и отмывают на специальном оборудовании под давлением. А после завершения операций удаляют технологическую грязь и прочищают масляные каналы – в том числе и ультразвуковым способом.

Станочный парк «Механики» разнообразен, здесь работают и станки советского производства, о чем руководство говорит с гордостью. Во-первых, поговорка «советское – значит отличное» родилась не на пустом месте. Во-вторых, фирма сама выпускает и модернизирует оборудование, отдельные его узлы и инструмент – здесь умеют и это. Поэтому станки живут долго и служат безотказно.

(фото: производственные цеха Механики)

И заканчивая этот рассказ, вернемся к базированию блока и скалкам. Кроме станков, компания «Механика» производит и специальные приспособления для работы с V-образными блоками. Оно обеспечивает точное базирование блоков на скалке и применяется при обработке плоскостей, гильзовке, расточке и хонинговании. Такую оснастку можно приобрести.

Производство оборудования – тоже аргумент в пользу фирмы, подчеркивающий уровень ее профессионализма.

 

Автор: Юрий Буцкий, к.т.н.

Расточка блока цилиндров

Блок цилиндров считается одной из самых важных частей двигателя автомобиля. От качества работы блока цилиндров будет зависеть эффективность работы всего ДВС. Однако, по мере износа двигателя Вашего автомобиля, внутренняя поверхность цилиндров может терять правильную цилиндрическую форму, что приводит к проблемам в работе ДВС и потере его мощности. Чаще всего эти проблемы связаны с деформацией и выводом из строя силовых агрегатов двигателя, вызванных чрезмерным внутренним напряжением. Нередко нарушения внутренней поверхности блока возникают при неравномерном износе цилиндра, например когда ось цилиндра не перпендикулярна оси коленвала. Это приводит к неравномерному движению поршня в блоке, в результате чего происходит повышенный износ двигателя. Как бы то ни было, единственным способом исправить такой дефект является расточка блока цилиндров.

В чём же заключается суть такой процедуры? Расточкой блока цилиндров называют устранение неровностей и дефектов (нередко заводских) путём снятия слоёв метала в тех местах блока, где имеется дефект, зазубрина, неровность или слишком узкий диаметр просвета. Также расточка позволяет выровнять оси цилиндров, и выправить нарушенную геометрию блока. Иногда расточку блока цилиндров проводят исключительно для того чтобы увеличить мощность двигателя автомобиля (под больший диаметр цилиндра). На первый взгляд процедура кажется до банальности простой. Но это не так. Здесь очень важна геометрическая точность работы, так как ошибка мастера может привести двигатель к поломке. В нашем автосервисе проводят работу по расточке блока цилиндров, состоящую из трёх основополагающих этапов – это дефектовка, собственно расточка и хонингование (шлифовка) блока.

Перед началом работ по расточке, квалифицированные специалисты проводят дефектовку блока цилиндров. Дефектовка позволяет определить ремонтопригодность цилиндра, а также причины и величину неисправности, способы её устранения. Дефектовка блока цилиндров проводится при помощи визуального осмотра двигателя и при помощи особых измерительных приборов, которые позволяют определить степень износа маховика, коленвала, блока цилиндров, а также выявить геометрические отклонения и дефекты блока и т.д. Без проведения дефектовки дальнейшая работа по ремонту бессмысленна. После проведения всех диагностических процедур и выявления деформаций и нарушений работы блока цилиндра, приступают к самой расточке.

Расточка блока цилиндров – очень точная и тонкая процедура, требующая от специалиста особых навыков и умений. Говоря простым языком, расточкой называют поэтапное снятие металла со стенок блока, при помощи специальных резцов. Во время проведения работы, двигатель фиксируется на столе расточного станка таким образом, чтобы его верхняя и нижняя части были параллельны друг другу. Это позволяет добиться постепенного выравнивания поверхности и равномерности диаметра цилиндра. После этого каждый отдельно поршневой отсек растачивается при помощи специальных резцов. Качественно выполнить подобную процедуру могут лишь специалисты автосервиса, на профессиональном оборудовании. Все попытки дилетантов произвести расточку в домашних условиях, как правило, приводят к поломке или последующей некачественной работе двигателя.

Заключительным этапом расточки является хонингование, или шлифовка блока цилиндров. Хонингование часто называют чистовой работой по расточке блока цилиндров, поскольку она позволяет добиться идеальной точности и гладкости обрабатываемой поверхности. Шлифование поверхности цилиндров проводится при помощи мелкозернистых абразивных блоков, которые возвратно-поступательными движениями опускаются в каждый из цилиндров. Во время проведения хонингования применяют смазку на керосине или керосиновой смеси веретённого масла. Некоторые дилетанты, считают этот этап работы необязательным, не имеющим особого значения. Наши специалисты с ними не согласны. Мы знаем, что от качества хонингования во многом зависит долговечность работы двигателя.

Ремонт ГБЦ и блоков цилиндра в Казани

Известно, что для коммерческого автомобиля большие пробеги не редкость. Именно поэтому приходится по достижению значительного пробега проводить капитальный ремонт двигателя. На протяжении многих лет мы занимаемся обслуживанием и ремонтом различных коммерческих автомобилей. Нам удалось достичь прекрасных результатов в своей работе. Прежде всего, это огромный опыт работы, который позволяет выполнять любые задачи в максимально короткое время и на высоком уровне. Кроме того, мы приобрели современное оборудование, которое предоставляет возможность проводить сложные операции по восстановлению двигателей. 

Шлифовка плоскости ГБЦ

Шлифовка ГБЦ проводится с целью доведения до необходимых параметров привалочной плоскости ГБЦ, сопрягающейся с плоскостью блока. У каждого двигателя есть свои стандарты, поэтому Важно проводить шлифовку на специализированном оборудовании.

В каких случаях проводят шлифовку:

  • Перегрев двигателя.
  • Разрушение прокладки ГБЦ.

Преимущества проведения шлифовки плоскости ГБЦ в нашем автосервисе:

  • Гладкая поверхность плоскости ГБЦ.
  • Гарантированное качество работ.
  • Применение высокотехнологичного оборудования.

Опрессовка ГБЦ

Перед тем, как приступить к ремонту двигателя, необходимо проверить головки блока цилиндров и возможно сделать опрессовку, так как эта часть двигателя взаимосвязана с другими механизмами и выявление причины поломки важно на ранних стадиях диагностики автомобиля.. Опрессовку ГБЦ необходимо производить в следующих случаях:

  1. Ремонт в связи с перегревом двигателя.
  2. Ремонт двигателя с чугунной ГБЦ.
  3. Заварка дефектов в ГБЦ из лёгких сплавов для проверки качества проведенных работ.
  4. При установке б/у ГБЦ.

Преимущества опрессовки на нашем автосервисе:

1.Скорость выполнения услуги до 3 минут.

2.Точность проведения процедуры.

3.Диагностика механизмов сопряжённых с ГБЦ, а также проверка герметичности втулок клапанов.

Основные этапы опрессовки ГБЦ:

  1. Герметизация. Герметизация детали нужна для точности проведения опрессовки. Для этого устанавливают резиновую прокладку и вставку из оргстекла. Затем устанавливают заглушки на боковые поверхности ГБЦ.
  2. Подача воздука. Через снабжённую штуцером заглушку на специальной установке внутрь полости ГБЦ подают воздух под давлением 4 6бар.
  3. Прогрев детали. В термоизолирующей ванне деталь прогревают до расширения, чтобы проверить вскрывшиеся дефекты. При нагреве металлические детали ГБЦ расширяются раскрывая трещины, из которых выходит воздух, так выявляют дефект.

На наших установках, помимо опрессовки можно проверять герметичность контуров охлаждения и смазки, определить характер дефектов, контролировать герметичность поверхностей втулок клапанов. 

Именно поэтому, если Вам необходима фрезеровка и опрессовка головок блоков цилиндров и блоков цилиндров, обращайтесь к нам. В самые кратчайшие сроки ремонт будет проведен и Вы сможете снова использовать транспорт в своих целях.

Расточка

Расточка блока – это процесс проточки стенок цилиндров двигателя (на специальных станках) для восстановления правильной геометрической формы при капитальных ремонтах мотора, либо с целью увеличения мощности.

Данная процедура повышает сохранность всех деталей двигателя. Трение поршневых колец о стенки цилиндра снижается, что положительно сказывается на работе автомобиля. При правильной работе блока не возникает усиленный расход масла.

Хонинговка

Хонингование является эффективным методом обработки поверхностей двигателя, поскольку здесь достигается высокий уровень точности. Хонингование выполняется для придания гильзам правильной формы, а также чтобы снизить шероховатость.

Хонингование способствует увеличению максимального уровня давления в цилиндрах. Этот показатель дает возможность двигателю повысить его эффективность.

Гильзовка

Гильзовка блока цилиндров - это технически и технологически сложный процесс, представляющий собой ремонт гильзы. Данный ремонт следует проводить либо по мере износа цилиндров, либо по рекомендации производителя (в зависимости от пробега).

Гильзовка блока цилиндров используется в тех случаях, когда глубина дефектов стенок не позволяет произвести расточку. То есть, повреждения настолько велики, что их невозможно подогнать под последний ремонтный размер.

Во время работы гильза берет весь удар на себя, в чем и состоит смысл ее использования. Своевременно проведенная гильзовка блока позволяет существенно увеличить сроки эксплуатации цилиндров в общей сложности.


Расточка блока цилиндров двигателя | Тюнинг ателье VC-TUNING

Расточка блока цилиндров двигателя

Данная процедура заказывается в VC-tuning, только под определенные тюнинг проекты.
 

Информационная статья в разделе TT. 

Для увеличения технических показателей двигателя (в данном случае это мощность) возможна расточка блока цилиндров. 

Стенки цилиндров поршневой системы двигателя автомобиля имеют достаточный запас толщины. Если  немного уменьшить это значение, то можно значительно увеличить объём внутреннего пространства цилиндров. Такие манипуляции позволят сжигать большее количество горючего за тоже время, что и до расточки, и, следовательно, мощность двигателя достаточно хорошо возрастает. 

Расточка головки блока цилиндров является сложным технологическим процессом, который требует достаточно много профессиональных навыков и наличия специального оборудования. Провести такую доработку двигателя в личном гараже не получится, придётся отправить весь механизм поршневой системы в специально оборудованную автомастерскую. 

Для того чтобы увеличение объёма цилиндров прошло гладко, необходимо сообщить мастеру, производящему ремонт вашего автомобиля, размер гильз. Расточенные гнезда под гильзы должны соответствовать своим размерам, иначе  поршни   будут работать неправильно и это повлечет за собой сбой всей системы. Перечислим основные требования, которые должны знать не только работники  ремонтных автомастерских,  предъявляемые к ремонтным гильзам блока цилиндров, это:

 

  • Эллипс и форма гильзы должны быть не больше значения в 0,02мм, величина ширины стенки – 0,01мм.
  • Обработка поверхности гильзы должна производиться по классу точности – не ниже 8.
  • При обработке гильзы нужно учитывать припуск на расточку, который выбирают из каталога для ремонтных гильз.
Все необходимые замеры нужно производить при помощи нутромера и микромера. Зазор между поршнем цилиндра и его головкой должен соответствовать установленным нормам. Имеется 5 классов цилиндров и 5 классов поршней соответственно: A, B, C, D, E. Взглянув на дно цилиндра, можно увидеть клеймо, на котором проставлена буква соответствующего класса. Проводить измерение диаметра поршня цилиндра необходимо в перпендикулярных между собой плоскостях (вертикальной и горизонтальной). Измерение глубины гнезда выполняют нутромером. Если полученный зазор меньше значения в 0,15 – все в порядке и поршневая система будет работать без посторонних стуков. 

Поделывая расточку блока цилиндров на токарном станке, автомеханик должен выдерживать соосность цилиндров относительно базовой стороны. Параллельность деталей поршневой системы согласуют с соответствующими частями распределительного вала. При проведении расточки блока цилиндров оставляют припуск в 0,1 – 0,15мм. Это расстояние обеспечит избежание перекоса при хонинговании головки блока. 

Процесс хонингования – обязательная операция при улучшении показателей мощности двигателя автомобиля. С наружной поверхности цилиндра и внутренней части гнезда под головку блока цилиндров хонингованием снимают слой материала, оставленного на припуск. Технологический процесс хонингования выполняется по определенной схеме.

Расточка блока цилиндров - что это такое?

Покупая новый, или еще «лучше» подержанный автомобиль, Вы не только обретаете средство передвижения, но еще и дополнительные хлопоты, связанные с его ремонтом. Избежать подобных вмешательств скорее всего не получится (разве что делом будут заниматься специалисты), а значит, уважающий себя автовладелец должен знать хотя бы теорию того или иного ремонтного процесса. Сегодня мы расскажем про расточку блоков цилиндров и если кто-то скажет, что может сделать это полностью самостоятельно, без необходимого инструмента, то, скорее всего, слукавит. Рядовой автовладелец может только снять головку блока цилиндров и после расточки установить ее на место, но сам процесс проводится в специальном сервисном центре, специалисты которого имеют для этого все необходимое оборудование и, в первую очередь, соответствующий станок.

1. Когда и для чего нужно проводить расточку блока цилиндров?

Головка блока, да и сам блок цилиндров двигателя ламаються очень редко. Водителю придется приложить немало усилий, что бы в ходе использования автомобиля, вывести их из строя (особенно блок цилиндров) раньше срока указанного производителем.

Ремонт этих деталей, как правило, носит плановый характер (капитальный ремонт мотора), а к услугам специалистов мастерской, прибегают в самых редких случаях. Именно таким случаем есть расточка блока цилиндров силового агрегата, которая, иногда, требуется при текущем ремонте. Второй, более известной причиной вмешательства в конструкцию мотора, является расточка блока цилиндров и его головки с целью усовершенствования двигателя (тюнинга, форсирования). Выполнение данной задачи, требует от автовладельца четкого понимания причины таких действий - для чего ему это надо.

Если, к примеру, процедуру хонингования мотора (абразивная обработка материалов) в пределах нормы, Вы в состоянии провести самостоятельно, то расточка блока несколько сложнее, ведь что бы выполнить хонингование распредвала, достаточно иметь в наличии электрическую дрель и ручную хонинговальную головку, а вот для расточки надо еще найти специальный станок. Давайте изучим теорию этого вопроса.

Представьте себе блок цилиндров, вместе со всеми поршнями, шатунами и коленчатым валом в придачу. Когда коленвал вращается, поршни цилиндров, соответственно, совершают возвратно-поступательное движение. Припустим, что оси постели подшипников коленчатого вала не перпендикулярны оси цилиндров, что тогда? Здесь происходит сразу несколько крайне неприятных явлений. Оси обоих деталей перестанут совпадать, а поршню в цилиндре, придется двигаться в перекошенном состоянии. Разумеется, в результате таких действий появляется дополнительная сила, которая изгибает шатун, что в конечном итоге приводит к перекосу шатунного подшипника. Кроме того, поршневые кольца, также, не станут нормально выполнять свои функции в «кривом» блоке, а значит высокое давление картерных газов и чрезмерный расход масла двигателю обеспечены.

Данная ситуация практически аналогичная той, которая возникает при искривлении шатуна (оси верхней и нижней головки не параллельны) и, конечно, учитывая наличие дефектов, говорить о каком-либо ресурсе двигателя, так же как и об эффективности выполняемой работы, просто не имеет смысла.

Влияющая на ресурс мотора, величина неперпендикулярности оси коленвала к осям цилиндров, по мнению некоторых специалистов, довольно маленькая и составляет примерно 0,02-0,04 мм по длине цилиндра. Превысить указанные значения очень просто, а факторы влияющие на это могут быть самыми разными. Например, если в ходе установки блока цилиндров на нижнюю плоскость, Вы забыли перед расточкой удалить остатки старой прокладки, то один из углов блока окажется приподнятым. Возможно, 0,15-0,2 мм – высота незначительная, но в данном случае результат будет виден сразу. Или, представьте другую ситуацию: хонинговальный станок, прямым действием «загнал» цилиндр сразу в последний размер (+1,0 мм), хоть перекос цилиндра еще и не прогнозируется, но он точно выйдет за указанные пределы.

Таким образом, выходит, что перекос цилиндров вдоль оси коленвала (продольное направление) практически недопустим, особенно если речь идет о качественном ремонте блока. Такой результат обеспечивается лишь когда, при расточке блока, за основу берут постель коленчатого вала, но и этого для его точной установки недостаточно. Дело в том, что постель имеет круглую форму, а значит при поперечном размещении, блок необходимо будет дополнительно привязать к какой-нибудь базовой поверхности. Таким местом вполне может стать верхняя блоковая плоскость: с ее помощью можно так выставить блок на стенке, что при расточке оси цилиндров будут перпендикулярны именно ей. Однако, слишком серьезной точности здесь не нужно, поперечный наклон цилиндра влияет лишь на минимальный припуск при выполнении расточки, который обеспечивает покрытие всей поверхности цилиндра.

2. Процесс расточки – что он из себя представляет?

Расточка блока цилиндров двигателя, является процессом обработки внутренней поверхности цилиндров, с целью обеспечения идеальной цилиндрической формы, которая, в ходе эксплуатации мотора и износа его отдельных деталей, существенно нарушается. Процесс расточки, предусматривает снятие определенного слоя металла там, где были выявлены зазубрены, задиры и прочие неровности. По сути, это первичная процедура, следом за которой выполняют хонингование (хонинговку) блока.

Хонинговка (англ. «honing» - точить) – это процедура отделочной обработки внутрецилиндрических поверхностей деталей, с помощью применения мелкозернистого, абразивного инструмента (представлен в виде смонтированных на хонинговальной головке брусков). Головка такого приспособления, закреплена в шпинделе хонинговочного станка и в ходе его вращения совершает движения разного рода (вращательные или возвратно-поступательные). Абразивные бруски плотно прилегают к обрабатываемой поверхности, а благодаря вращению головки, оказывают на нее максимальное воздействие.

Хоненгование – заключительный процесс, осуществляемый сразу после растачивания, протягивания и шлифования. В результате, он позволяет получить высокую точность обработки (вплоть до первого класса) и шероховатость поверхности до тринадцатого класса. Конечно, проделать все это самому, без определенных знаний, умений и соответствующего оборудования просто нереально, поэтому, скорее всего, придется обращаться за помощью к специалистам. Однако, владеть информацией о технологии процедуры расточки никогда не помешает.

Если, вдруг, Вам нужно увеличить объем гнезда под ремкомплект (процесс гильзовки), то обязательно скажите мастеру какого размера имеющиеся в наличии ремонтные гильзы, только так он сможет качественно произвести расточку блока цилиндров. Измерить цилиндры, вполне можно самостоятельно и в домашних условиях, использовав для этих целей специальный измерительный прибор - нутромер.

Расточку цилиндров выполняют на спец.станках, а так как главным моментом в этом деле выступает соблюдение точности размеров (до 0,01 мм), геометрии цилиндра и качества обрабатываемой поверхности, то весь процесс проходит на минимальной скорости.

Совершая обработку на станке для расточки блоков, мастер должен добиться одновременного соблюдения параллельности цилиндров относительно базы, как по длине, так и по перпендикулярности. Обычно, параллельность «связывают» с постелями распределительного вала, но никак не с корпусом блока. В процессе расточки блока цилиндров, специалисты придерживаются определенного припуска. Это значит, что малая часть верхнего дефектного слоя (примерно 0,1-0,15 мм) остается нетронутым. Такая мера необходима, чтобы не допустить перекоса оси цилиндра в ходе проведения хонингования – обязательной процедуры, после расточки блока. Его используют для снятия верхнего слоя цилиндра (гнезда).

Заключительный этап данного процесса имеет определенную технологию проведения. После окончания хонинговки, можно смело продолжать задуманный ремонт или тюнинг мотора. Обратите внимание! Когда будете проводить обратную сборку блока цилиндров, обязательно учитывайте необходимость установки рекомендованных производителем параметров и, в первую очередь, не стоит забывать об установке головки блока цилиндров.

К большому огорчению, ничего полностью идеального в этом мире не существует. Вот и плоскости отдельно взятого блока цилиндров, далеко не всегда бывают параллельны друг другу и пастели коленчатого вала, а перпендикулярность цилиндров их осям – далеко не установленный факт, то есть пока считается только теорией (гипотезой). Но строить всю процедуру растачивания лишь на гипотезах, конечно нельзя, ведь любая случайность с легкостью может испортить дело, тем более, что каждое правило имеет свое исключение, а гипотеза и подавно. В общем, получается парадоксальная ситуация: вроде есть блок, есть необходимое для расточки оборудование, а правильно провести процедуру, под силу далеко не каждому мастеру. Если доверить дело сомнительному «профессионалу», то предугадать конечный результат вряд ли получится (он может не только не улучшить, но и наоборот – окончательно испортить геометрию блока цилиндров мотора). В этом случае, даже «прямое» хонингование (без расточки) покажется для блока благодатью, так как если оно и ухудшит исходные геометрические параметры, то сделает это не сильно, в пределах разумного.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Расточка Двигателя | Расточка Двигателя в СПБ

Расточка Двигателя | Расточка Двигателя в СПБ
  • Шлифовка и фрезеровка плоскости,проверка на трещины ( опрессовка ),замена направляющих втулок клапана,правка седел,регулировка клапанов,расточка постели распредвала

  • Гильзовка, ремонт постели коленвала, обработка плоскости, проверка блока на микротрещины

  • Восстановление коленвала,правка,чистка коленчатого вала,проверка на микротрещины.

  • Замена втулок шатуна, расточка верхней головки шатуна, хонингование шатуна

Появились вопросы по ремонту деталей двигателя ?

Высококвалифицированные специалисты компании  ДВИГАТЕЛЬ-СПб помогут восстановить мотор ВАШЕГО автомобиля с гарантией качества, в минимальные сроки и по оптимальной стоимости.

Cамые низкие цены на ремонт деталей двигателя в Санкт-Петербурге

Минимальные сроки на механическую обработку деталей двигателя

Работа с соблюдением заводских технологий позволяет нам гарантировать качество выполняемых услуг.

Мы готовы развиваться, а не сидеть на месте выполняя стандартные для нас операции. По этой причине мы стараемся взяться и выполнить любую сложную и высокотехнологичную работу.  Например:

  • Высверливание свечей накала
  • Извлечение болтов
  • Высверливание форсунок
  • Шлифовка коллекторов
  • Проточка тормозных дисков
  • Шлифовка регулировочных шайб
  • Шлифовка фрикционов АКПП
  • Шлифовка ножей
  • Извлечение свечей накала
  • Извлечение топливных форсунок
  • Расточка центральных отверстий колесных дисков
  • Проточка маховиков
  • Сварка чугунных блоков
  • Восстановление резьбы в блоке цилиндров
  • Восстановление свечной резьбы

Так уж исторически сложилось, что основными нашими заказчиками являются мотористы. Каждый из них специализируется на своих марках, моторах, моделях техники. Один специалист по Scania, другой является первоклассным мотористом по моделям AUDI, VW. Если вам требуется произвести кап ремонт двигателя, а вы не знаете к кому обратиться, то свяжитесь с нами. Мы подберем вам моториста специализирующегося на вашей модели техники.

Всегда на складе поддерживаются оригинальные и не оригинальные запчасти для ремонта двигателя. Поможем вам подобрать запчасти по марке автомобиля, модели двигателя, размерам или характеристикам

ПОРШНЕКОМПЛЕКТЫ

Поршнекомплекты (поршневые) от ведущих производителей комплектующих для ремонта двигателя. На складе всегда поддерживается ассортимент поршневых  Kolbenschmidt, Mahle, Nural, Teikin, Autowelt на самые ходовые моторы.

ГОЛОВКИ БЛОКА ЦИЛИНДРОВ

Новые головки блока цилиндров от ведущих производителей комплектующих для ремонта двигателя. На складе всегда поддерживается ассортимент головок  Kolbenschmidt, Mahle Kolben, Oe Germany, Motive Components, MecDiesel, AE, Amadeo Marti Carbonell — AMC, CSANZ, BF, SWAG, FP-diesel, Diesel Technic на самые ходовые моторы.

ВКЛАДЫШИ

Коренные и шатунные вкладыши от ведущих производителей комплектующих для ремонта двигателя. На складе всегда поддерживается ассортимент  вкладышей Kolbenschmidt, Mahle, AE, TAIHO, Autowelt на самые ходовые моторы.

ПОРШНЕВЫЕ КОЛЬЦА

Поршневые кольца от ведущих производителей комплектующих для ремонта двигателя. На складе всегда поддерживается ассортимент поршневых колец Kolbenschmidt, Mahle, GOETZE, Autowelt на самые ходовые моторы.

НАБОРЫ ПРОКЛАДОК

Наборы прокладок от ведущих производителей комплектующих для ремонта двигателя. На складе всегда поддерживается ассортимент комплектов прокладок  Victor Reinz, Elring, Goetze, Payen, Autowelt, Motive Components, Eristic  на самые ходовые моторы.

ПРОКЛАДКИ ГБЦ

Прокладки головки блока цилиндров ( ГБЦ )от ведущих производителей комплектующих для ремонта двигателя. На складе всегда поддерживается ассортимент прокладок головки блока цилиндров ( ГБЦ) Victor Reinz, Elring, Goetze, Payen, Autowelt, Motive Components, Eristic  на самые ходовые моторы.

Коллектив компании Двигатель-СПб предлагает качественные запчасти для восстановления мотора.

  • Оригинальные или неоригинальные запчасти . Какие лучше купить ?

    На ранке запасных частей существуют производители, которые поставляют свои детали на конвейер. Например, компания MAHLE поставляет свои поршни производителям автомобилей AUDI , VW, BMW. Из этого следует, что качественные запчасти продаются не только у официальных дилеров. Можно купить аналогичные детали, но намного дешевле, т.е. у производителей которые поставляют свои комплектующие на заводы.

  • Как подобрать гильзы, если заводом не предусмотрена гильзовка мотора, а только расточка цилиндров в ремонтный размер?

    Если заводом изготовителем не предусмотрена гильзовка двигателя, то гильзы подбираются по размерам. Для подбора следует знать диаметр поршней и длину гильзуемого цилиндра. Следует также обращать внимание на толщину стенки подбираемой гильзы. После установки и обработки на расточном станке, она не  должна быть меньше 1,5 мм.  В том случае, если заводскую гильзу не подобрать по размерам, то ее можно изготовить на токарном станке из толстостенной заготовки. Такие заготовки всегда поддерживаются на нашем складе.

  • На родных вкладышах написано SPUTTER ,а магазине продали без этой надписи. Можно ли их устанавливать?

    Современные моторы достаточно сильно нагружены и требуют установки более прочных и износостойких запчастей. Вкладыши SPUTTER из этой серии. Комплект вкладышей на одну шейку состоит из двух половинок. Следует помнить, что вкладыши с обозначением SPUTTER следует устанавливать в нагруженную часть. Например, в крышку шатуна ставится обычный вкладыш, а в шатун SPUTTER.  С коренными вкладышами все аналогично. Категорически запрещено использовать обычные вкладыши вместо SPUTTER

© Двигатель-СПб. Все права защищены.

Расточка блоков цилиндра цена - от 2700 р. Блок цилиндров (расточка)

Расточка блока цилиндров входит в плановое мероприятие по капитальному ремонту двигателя. Процедура направлена на восстановление идеальной геометрии, а также создание необходимого зазора для правильного движения поршня. Стоит отметить, что процедура может иметь вынужденный и преднамеренный характер. Расточка с заменой поршней на аналоги преимущественного диаметра позволяет добиться от двигателя более высокой мощности, что выгодно используется в автоспорте. В этом случае всю ответственность за изменение технических показателей автомобиля несёт автовладелец.

Расточка блоков цилиндра

Основные причины расточки

Работа поршня рано или поздно начинает сопровождаться негативным контактом с цилиндром. В результате трения двух металлических деталей происходит стачивание последнего, что отражается в увеличении диаметра, изменении формы и нарушении параллельности отверстия. Иногда износ провоцирует образование трещин и неровностей на внутренней поверхности. Даже минимальные отклонения от нормы снижают динамику автомобиля. Двигатель начинает расходовать масло, работать неравномерно, издавать посторонние звуки.

Расточка блока цилиндров – единственное мероприятие, которое может выступить альтернативой замене мотора. Оно позволяет продлить срок службы двигателя, полностью восстанавливая, а в некоторых случаях – улучшая его характеристики. Отсутствие ремонтных работ неминуемо приведёт к заклиниванию поршней. Это может произойти в любой момент, в том числе при движении по дорогам общего пользования.

Расточка блоков цилиндра — руками профессионалов

Сложность процесса заключается в высокой точности, сравнимой с заводским изготовлением деталей. Расточка производится под конкретный размер поршня с соблюдением параллельности и перпендикулярности всех отверстий. В нашем автосервисе используются специальные станки, позволяющие выполнить эту задачу с минимальным уровнем погрешностей (0,01 мм). В наших силах исправить как заводской дефект, так и приобретённый в процессе эксплуатации транспорта.

Процедура выполняется в два этапа. В первую очередь производится формирование отверстия, после чего внутренняя поверхность тщательно шлифуется (хонингование). Только так можно достичь идеальной геометрии, исключая возможность смещения оси движения. Стоит отметить, что параллельность определяется не по корпусу, а распредвалу. Каждый цилиндр протачивается отдельно, предполагая небольшую скорость вращения резца. По окончанию работ проводится сборка блока и его установка на прежнее место.

Цена расточки блока цилиндра

Стоимость работ зависит от особенностей двигателя и количества цилиндров. Также во внимание принимаются геометрические характеристики отверстий, размер расточки и специфика монтажа/демонтажа, разборки/сборки самого блока. Внеплановое (не в рамках ремонтно-восстановительных мероприятий) увеличение диаметра отверстия рассчитывается отдельно.

Ход двигателя в зависимости от диаметра отверстия

Еще во времена Формулы-1, когда двигалась V-10, нередко можно было увидеть обороты двигателя почти до 20 000 об / мин - число, которое вы никогда не увидите на дорожных автомобилях. Это стало возможным только благодаря чрезвычайно короткому ходу двигателя и широкому проходу. Джейсон Фенске из Engineering Explained выпустил видео, в котором рассказывается, как именно изменение размеров двигателя может развить большую мощность, даже если его общий рабочий объем остается прежним.

Диаметр цилиндра двигателя - это диаметр каждого цилиндра, а ход - это расстояние внутри цилиндра, которое проходит поршень.По сути, максимальная мощность двигателя зависит от того, сколько оборотов он может развивать. Чем больше оборотов в минуту, чем больше ходов, тем больше мощности он выдает в целом. Поэтому логично, что самые мощные двигатели также имеют самые высокие обороты. Поскольку поршню с коротким ходом не нужно перемещаться так далеко за каждый цикл, он может преодолевать большее расстояние за то же время по сравнению с двигателем с более длинным ходом и меньшим внутренним диаметром. Это означает больше оборотов. Точно так же больший диаметр означает больший размер клапанов, а это значит, что он может всасывать и выталкивать больше воздуха в каждом цикле.А больше воздуха означает больше мощности.

Работает и в обратном направлении. Допустим, ваша цель - эффективность, а не мощность. Таким образом, лучшим двигателем будет двигатель с маленьким диаметром цилиндра и большим ходом. Почему? Что ж, это немного сложнее, чем уравнение мощности, но оно включает площадь поверхности. По сути, чем больше площадь поверхности цилиндра во время сгорания, тем меньше энергии теряется на тепло, что приводит к более эффективному циклу.

Но это всего лишь простые объяснения.Если вы хотите узнать все, что нужно знать о диаметре ствола и ходу поршня, посмотрите видео Фенске выше.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Диаметр цилиндра или ход поршня: что дает больше мощности?

Если вы не водите автомобиль Mazda с роторным двигателем, характеристики вашего бензинового или дизельного двигателя в значительной степени определяются его внутренним диаметром (шириной или диаметром цилиндров) и ходом (расстоянием, которое поршень проходит внутри цилиндра).

Но если вы хотите увеличить мощность, что лучше: увеличить диаметр цилиндра или ход поршня? Джейсон Фенске из Engineering Explained разбирает это в сопроводительном видео.

Короткий ответ заключается в том, что больший диаметр отверстия - лучший способ получить больше мощности. Это создает больше места, позволяя увеличить отверстия для клапанов, что, в свою очередь, может подавать больше топлива и воздуха в цилиндр. Это плохо работает на низких оборотах, но работает на высоких оборотах. Это хорошо сочетается с другим фактором. Большее отверстие с более коротким ходом также позволяет двигателю увеличивать обороты, что создает больше лошадиных сил.

И наоборот, длинный ход, как правило, лучше с точки зрения топливной экономичности, поскольку он уменьшает площадь поверхности во время сгорания. При меньшей площади поверхности остается меньше места для отвода тепла, что обеспечивает превращение большей части энергии сгорания в полезную работу по опусканию поршня.

Малогабаритный длинноходный двигатель также требует, чтобы пламя перемещалось на меньшее расстояние во время сгорания, а это означает, что продолжительность горения короче. Это позволяет сгоранию снова выполнять больше работы и повышать эффективность двигателя.

Однако это всего лишь обобщения. Двигатели с большим диаметром цилиндра могут быть эффективными, а двигатели с длинным ходом - мощными. Но, не глядя на какие-либо другие переменные, существует корреляция между размером отверстия и мощностью, а также между длиной хода и эффективностью.

Диаметр цилиндра и ход поршня - не единственные факторы, влияющие на конструкцию двигателя, и поэтому это не жесткие правила. Масса вращающихся частей и использование турбонаддува или наддува могут повлиять на выходную мощность и эффективность.

Если говорить о двигателе отдельно, то это лишь часть картины. Производительность двигателя в конечном итоге определяется автомобилем, в котором он используется. Выбор трансмиссии, а также вес и аэродинамика автомобиля также влияют на эффективность. В то же время мощный двигатель бессмысленен, если его нельзя передать на асфальт.

Для большей глубины посмотрите видео выше. Как и во всех видеороликах по EE, вы обязательно расширите свои знания в области автомобильной техники.

Отношение рабочего диаметра к цилиндру: ключ к эффективности двигателя

Хотя существует множество факторов, влияющих на эффективность двигателя, основным фактором, который необходимо учитывать, является сама геометрия двигателя.Имеет значение не только общий размер двигателя, но и соотношение сторон цилиндров двигателя, определяемое отношением длины хода к диаметру цилиндра. Чтобы объяснить причину, необходимо учитывать три фактора: теплопередачу в цилиндре, продувку цилиндра и трение.

Простые геометрические соотношения показывают, что цилиндр двигателя с более длинным отношением хода к диаметру цилиндра будет иметь меньшую площадь поверхности, подверженную воздействию газов камеры сгорания, по сравнению с цилиндром с более коротким отношением хода к диаметру цилиндра. Меньшая площадь напрямую ведет к снижению теплопередачи в цилиндре, увеличению передачи энергии на коленчатый вал и, следовательно, более высокому КПД.

На продувку цилиндра - явление двухтактного двигателя, при котором продукты выхлопа в цилиндре заменяются свежим воздухом - также сильно влияет соотношение рабочего диаметра цилиндра в двухтактном двигателе с оппозитными поршнями и однопоточной продувкой. . По мере увеличения отношения длины хода к диаметру цилиндра увеличивается и расстояние, которое свежий воздух должен пройти между впускными отверстиями на одном конце цилиндра и выпускными отверстиями на другом конце. Это увеличенное расстояние приводит к более высокой эффективности продувки и, как следствие, к меньшей работе насоса, поскольку меньше свежего воздуха теряется из-за короткого замыкания заряда.

На трение в двигателе влияет соотношение длины и диаметра цилиндра из-за двух конкурирующих эффектов: трения в подшипниках коленчатого вала и трения силового цилиндра. По мере уменьшения отношения хода к диаметру отверстия в подшипнике увеличивается трение, поскольку большая площадь поршня передает большие силы на подшипники коленчатого вала. Однако соответствующий более короткий ход приводит к уменьшению трения силового цилиндра, возникающего на границе раздела кольцо / цилиндр.

В Achates Power мы провели обширный анализ во всех трех областях, чтобы правильно определить оптимальную геометрию двигателя, которая дает наилучшие возможности для создания высокоэффективного двигателя внутреннего сгорания.Моделирование цилиндров показало, что теплопередача быстро увеличивается ниже отношения хода поршня к диаметру около 2, моделирование систем двигателя показало, что работа насоса быстро увеличивается ниже отношения хода поршня к диаметру около 2,2 (из-за связанное с этим снижение эффективности продувки), а модели трения двигателя показали, что значения трения подшипников коленчатого вала и силового цилиндра по большей части компенсируют друг друга для нашего двухтактного двигателя с оппозитными поршнями.

Здесь следует отметить, что в двигателе с оппозитными поршнями, где два поршня на цилиндр работают в противоположном возвратно-поступательном движении, «ход» является результатом комбинированного движения двух поршней и примерно вдвое превышает расстояние одного поршней перемещается за пол-оборота.Этот факт позволяет двигателю с оппозитными поршнями иметь гораздо большее отношение рабочего диаметра к цилиндру, чем двигатель с одним поршнем на цилиндр, без чрезмерно высоких средних скоростей поршней, которые отрицательно сказываются на инерционной нагрузке и трении.

Для контекста, ниже приведен график зависимости удельной мощности от отношения рабочего диаметра некоторых современных четырехтактных двигателей, предназначенных для широкого спектра применений. Обратите внимание, что все двигатели в таблице имеют головки цилиндров, поэтому ход описывает фактический ход поршня.Данные на графике показывают тенденцию, при которой двигатели, которым требуется высокая удельная мощность - например, в гоночных автомобилях - имеют малое отношение длины хода к диаметру цилиндра, а двигатели, требующие высокой топливной эффективности, - например, в тяжелых грузовиках и морских судах. грузовые суда - имеют большое отношение длины хода к диаметру ствола.


Ограничивающим фактором в этом соотношении являются силы инерции, возникающие в результате движения поршня. Для достижения высокой удельной мощности двигатель должен работать на высоких оборотах (до 18 000 об / мин для двигателя Формулы 1), что приводит к высоким инерционным силам, которые необходимо ограничивать с помощью небольшого отношения хода поршня к диаметру цилиндра.Для применений, требующих высокого КПД, необходимо большое отношение длины хода к диаметру отверстия и, опять же из-за инерционных сил поршня, требуется более низкая частота вращения двигателя и меньшая удельная мощность. Для морского применения с ходом 2,5 м частота вращения двигателя ограничена 102 об / мин.

Для сравнения: двухтактный двигатель с оппозитными поршнями Achates Power разрабатывается с соотношением рабочего диаметра в диапазоне от 2,2 до 2,6. Этот диапазон значений отношения хода поршня к диаметру цилиндра позволяет нам создать высокоэффективный двигатель внутреннего сгорания, сохраняя при этом средние скорости поршня, сравнимые с двигателями, доступными в настоящее время для средних и тяжелых условий эксплуатации.Любой двухтактный двигатель с оппозитными поршнями с отношением рабочего диаметра к цилиндру ниже 2 будет страдать от высокой теплопередачи в цилиндре и плохой продувки, которые снижают общую эффективность двигателя.

Диаметр цилиндра и ход поршня

Диаметр цилиндра и ход поршня
Гленн

Исследовательский центр

На этой странице мы представляем некоторые технические определения, которые используются описать двигатель внутреннего сгорания.На рисунке показана компьютерная анимация одного цилиндра братьев Райт. Авиадвигатель 1903 года. Небольшой раздел коленчатый вал показан красным, поршень и шток показаны серым, а цилиндр, содержащий поршень, показан синим цветом. Мы сократили цилиндр, чтобы мы могли заметить движение поршня.

Коленчатый вал делает один оборот при движении поршня. сверху цилиндра (внизу слева на рисунке) вниз (вверху справа) и обратно вверх.Поскольку поршень соединен с коленчатым валом, можно отметить движение поршня по углу поворота коленчатого вала.

Нулевые градусы возникают, когда поршень находится в верхней части цилиндра. С тех пор составляют 360 градусов за один оборот, поршень находится внизу, когда угол поворота коленвала составляет 180 градусов. Расстояние, пройденное поршнем от нуля градусов до 180 градусов называется ходом - S поршня. Это объясняет, почему двигатель Райта и современные автомобильные двигатели называют четырехтактные двигатели.2/4

Этот объем называется объемом рабочего тела , потому что Работа выполняется движущимся газом под давлением, равным давлению газа, умноженному на объем перемещаемого газа. Для своего двигателя 1903 года братья Райт выбрали диаметр цилиндра 4 дюйма и диаметр цилиндра. ход 4 дюйма. Объем рабочей жидкости для одного поршня составляет 50,26 куб. дюймы. Братья использовали четыре поршня, так что сумма всех рабочих объем 201 куб. дюйм. Для любого двигателя внутреннего сгорания сумма все рабочие объемы всех цилиндров называется полным рабочим объемом двигателя.


Действия:

Экскурсии

Навигация ..


Руководство для начинающих Домашняя страница

Диаметр отверстия Vs. Инсульт - какой из них стоит больше энергии?

Один из основных клиентов хот-роддинга ищет способы добавить больше мощности. Один из популярных способов сделать это - добавить смещение. Для этого в конфигурации двигателя есть два измерения, которые определяют рабочий объем: диаметр цилиндра и ход двигателя.

Рискну заявить очевидное, диаметр цилиндра двигателя равен диаметру цилиндра (и поршня внутри него), а ход - вертикальному расстоянию, которое поршень проходит внутри цилиндра. Как в реальной жизни, так и в Интернете ведется много споров о том, какое измерение стоит большей силы.

Введите Джейсона Фенске из инженерного отдела. С его желанием объяснить, как работает практически все, что угодно, автомобильная промышленность, он взял на себя эту тему. «Если ваша цель - создать как можно больше лошадиных сил, есть причины, по которым предпочтительнее использовать больший диаметр цилиндра по сравнению с длиной хода», - начинает Фенске.Однако, если ваша цель - создать двигатель, который будет максимально эффективным, есть причины использовать более длинный ход поршня по сравнению с внутренним диаметром цилиндра ».

Для того, чтобы полностью проиллюстрировать различия, он привел несколько довольно крайних примеров на обоих концах спектра (больше, чем растачивание заводского двигателя на 0,040 дюйма или добавление хода 0,5 дюйма).

Здесь вы можете увидеть размеры примеров цилиндров, использованных во всех расчетах, все из которых имеют размер до 0.Рабочий объем 5 литров (30,5 куб. См). Слева находится цилиндр больше, чем, но с соотношением цилиндров и ходов двигателя F1, Типичный квадратный цилиндр, используемый во многих двигателях 2,0-литрового I4 и 3,0-литрового V6, и увеличенный длинноходный цилиндр с противоположным диаметром цилиндра. передаточное число как у двигателя F1.

«В рамках этого обсуждения мы обсудим три цилиндра с одинаковым рабочим объемом. У всех будет полулитровый рабочий объем, а середина дорожного примера будет квадратной на 86 мм (3.386 дюймов) и ходом 86 мм. Квадратный цилиндр объемом 0,5 литра используется во многих дорожных двигателях, особенно в 2,0-литровых I4 и 3,0-литровых V6 », - говорит Фенске

.

Для примера двигателя с прямоугольным сечением (диаметр цилиндра больше хода) Fenske создал цилиндр диаметром 117 мм (4,606 дюйма) и ходом поршня 47 мм (1,850 дюйма). «Таким образом, соотношение цилиндров к ходу поршня сравнимо с двигателем F1», - объясняет Фенске. «Как правило, цилиндры F1 не такие большие, но такие размеры обеспечивают, например, цилиндры одинакового рабочего объема.”

Для нижнего квадрата (ход больше диаметра отверстия) был создан другой цилиндр увеличенных размеров с внутренним диаметром 63 мм (2,480 дюйма) и ходом 158 мм (6,220 дюйма). У этого цилиндра обратное соотношение диаметра цилиндра к ходу хода по сравнению с двигателем F1 », - говорит Фенске. «Диаметр 63 мм с ходом 158 мм - это далеко не то, что вы обычно используете в дорожных автомобилях, но это поможет проиллюстрировать основные моменты».

Создание лошадиных сил

Одна вещь, которую следует помнить о лошадиных силах, особенно при погоне за ней, заключается в том, что это расчетная единица, и, по сути, это крутящий момент во времени.«Одна из важнейших составляющих мощности - это то, насколько быстро вы можете увеличить обороты двигателя», - говорит Фенске. «Это функция крутящего момента, умноженного на число оборотов в минуту, умноженного на 5 252 (в английских единицах измерения). Если крутящий момент остается постоянным, что непросто сделать, мощность в лошадиных силах просто зависит от числа оборотов. Если вы можете увеличить обороты двигателя, вы сможете получить больше мощности, и это конечная цель ».

Существует множество факторов, определяющих максимальную скорость двигателя, но для целей этого гипотетического обсуждения Fenske предпочитает использовать скорость поршня в качестве окончательного ограничивающего фактора потенциальной гипотетической скорости двигателя.

«Уменьшая длину хода, вы можете увеличить предел числа оборотов в минуту. Автомобильные двигатели обычно не превышают 25 метров в секунду. Как только вы превысите этот лимит, у вас начнутся проблемы. Мы можем довольно легко вычислить среднюю скорость поршня для различных примеров, используя следующее уравнение:

«Если мы знаем скорость поршня, мы можем подключить ее, а затем сделать некоторое деление и вычислить максимальное число оборотов в минуту на основе длины хода», - объясняет Фенске. «Для цилиндра с квадратной формой максимальная скорость составляет 16 000 об / мин.Для квадратного цилиндра это около 8700 об / мин, а для нашего недостаточно квадратного цилиндра наш предел будет около 4700 об / мин. Поскольку конфигурация с более коротким ходом может увеличивать обороты, она имеет больше рабочих ходов в секунду и, следовательно, дает больше мощности ».

Fenske отмечает, что тот факт, что конфигурация двигателя может достигать 8700 об / мин без превышения скорости поршня, не означает, что двигатель будет иметь такие высокие обороты. Помимо скорости поршня, существуют и другие ограничивающие факторы.

Вторым преимуществом установки с большим отверстием является ее физически больший размер.«Это связано с размером ваших клапанов и объемом воздушного потока, который мы можем пропускать через двигатель», - говорит Фенске. Имея возможность устанавливать клапаны физически большего размера, вы можете перемещать больше воздуха в цилиндр и из него.

«Начиная с примера двигателя диаметром 80 мм, мы скажем, что он имеет два 30-миллиметровых впускных клапана и два 25-миллиметровых выпускных клапана. Используя этот пример, мы масштабируем его до наших примеров цилиндров », - постулирует Фенске.

«После масштабирования самый большой цилиндр имеет два впускных клапана 44 мм по сравнению с впускными клапанами 24 мм в примере с малым диаметром отверстия, а выпускные клапаны имеют размер 37 мм в примере с большим диаметром и 20 мм в самом маленьком.Теперь, если дать этим выпускным клапанам точно такой же подъем (5 мм), площадь впускных клапанов в самом большом примере составляет около 25,2 квадратных сантиметра; Например, 86-миллиметровый размер составляет 18,6 кв. см, а диаметр отверстия 63 мм - около 13,7 кв. см ».

Очевидно, что возможность перемещать почти вдвое больше воздуха является преимуществом для большего диаметра в этом примере, но в практических приложениях разница между «малым» и «большим» отверстием гораздо менее значительна. Тем не менее, Фенске действительно поднимает хороший момент в видео о больших клапанах и снижении объемного КПД на низких оборотах, но это кроличья нора на другой день.

В дополнение к более короткой длине хода и соответствующему теоретическому более высокому пределу оборотов, больший диаметр отверстия позволяет устанавливать большие клапаны в головку блока цилиндров, что, в свою очередь, увеличивает максимальный потенциал воздушного потока двигателя.

Создание эффективности

Иногда максимальная мощность не является целью, а цель состоит в том, чтобы иметь эффективный универсальный двигатель, например, уличный автомобиль. Согласно общей логике машиностроения, более длинный ход обеспечивает такую ​​эффективность по сравнению с большим диаметром отверстия.

«Одна из причин, по которой я часто слышал, почему двигатели с длинным ходом более эффективны, заключается в том, что их площадь поверхности относительно объема внутри цилиндра очень мала, что означает меньшую общую площадь для отвода тепла. к, во время горения. Это означает, что большая часть этого тепла превращается в полезную работу, толкающую поршень вниз », - говорит Фенске.

«Вычислить площадь поверхности для наших примеров достаточно просто, и мы обнаружили, что квадратный двигатель имеет площадь поверхности 386 кв. См, квадратный двигатель имеет площадь 349 кв. См, а длинноходный двигатель имеет площадь поверхности. площадь 378 кв. см.Итак, мы видим, что по мере того, как вы уходите в любом направлении от квадратного двигателя, вы начинаете получать большую площадь поверхности ».

Может показаться, что эти числа не подтверждают идею о том, что более длинный ход более эффективен. Однако Фенске указывает на недостаток в использовании общей рабочей площади цилиндра. «Вы должны учитывать степень сжатия и то, как цилиндр выглядит во время сгорания», - объясняет он.

«Подквадратный цилиндр на самом деле ближе всего к квадратному (во время горения) в этом примере.Посчитав числа в точке сгорания, вы увидите, что длинноходный цилиндр имеет наименьшую площадь поверхности и теперь превращает большую часть тепла от сгорания в полезную работу ».

Цифры в правом верхнем углу (386, 349 и 378) показывают, что общая площадь поверхности увеличивается по мере удаления от «квадратной» конфигурации. Однако учет формы цилиндра при сгорании (середина-нижний правый угол) показывает, что длинноходный цилиндр на самом деле ближе всего к квадрату в точке сгорания, что делает его конструкцию более эффективной.

С этим также связана продолжительность горения, которая, предупреждаем, становится сложной. «Логика здесь в том, что чем быстрее вы сможете сжечь топливовоздушную смесь, тем эффективнее будет ваш двигатель. Простой ответ на вопрос, почему малокалиберный длинноходовой двигатель сжигает заряд быстрее, заключается в том, что фронт пламени имеет меньшее расстояние для перемещения », - говорит Фенске.

«К тому времени, когда фронт пламени достиг стенки цилиндра двигателя с квадратной формой, поршень переместился дальше по каналу цилиндра, чем в цилиндре с меньшим диаметром, и вы получите менее эффективное сгорание.”

Если вы действительно хотите погрузиться в тяжелую работу по вопросу о продолжительности ожога, перейдите к отметке 11:34 на видео, где Фенске рассказывает об обнаруженном им исследовании и объясняет опубликованные результаты. Это точно интересно.

Хотя эти примеры являются скорее иллюстративными, чем практическими, они действительно позволяют увидеть различия в диаметре ствола и хода в общих чертах. Фенске заканчивает видео заявлением об отказе от ответственности, говоря: «Конечно, есть исключения из всего, что мы обсуждали.Тот факт, что двигатель имеет большой диаметр цилиндра, не означает, что он не может быть эффективным. Тот факт, что двигатель имеет большой ход, не означает, что он не может вырабатывать тонну лошадиных сил. Но если вы изолировать эти переменные по отдельности, вы увидите вот что ».

Простое объяснение продолжительности горения в верхнем правом углу показывает, что фронт пламени просто имеет меньшее расстояние для полного горения. Иллюстрация в нижнем левом углу относится к исследованию, которое Фенске представил Юго-Западным исследовательским институтом, и довольно интересна, если не глубже, в научных исследованиях, чем мы можем здесь разобраться.

Желательность двигателя большого диаметра

C OMPARISONS состоят из соответствующих характеристик короткоходного двигателя большого диаметра и длинноходного двигателя малого диаметра в связи с аргументом автора о том, что первый двигатель наилучшим образом удовлетворяет требованию о том, что двигатель должен быть хороший продукт, который легко производить. Он выбирает двигатель с L-образной головкой в ​​целях иллюстрации, поскольку этот тип находится в сфере компетенции всех автомобильных инженеров.

При рассмотрении технических характеристик нового двигателя первая проблема, которую необходимо решить, - это определение длины. Обычно определенная длина задается произвольно, но это ограничивает конструктора с самого начала, и по какой-то необъяснимой причине новый проект, таким образом, компрометируется, а не изменяет предвзятое представление о том, какой должна быть длина колесной базы. Но в отрасли имеется множество свидетельств того, что происходит, когда конструктор начинает «толпиться», и автор утверждает, что, если двигатели должны представлять нечто большее, чем чугун, оборудованный водопроводом, достаточно места для двигателя - по крайней мере, достаточно, чтобы позволить должное рассмотрение каждой функции - должно быть разрешено.Он также заявляет, что короткоходный двигатель с большим диаметром цилиндра требует места для локтей для себя и своих частей, а затем обсуждает, насколько большим должно быть отверстие цилиндра.

После рассмотрения вопросов, касающихся охлаждения клапанов и устойчивости двигателя, анализируется конструкция блока цилиндров и описывается метод конструкции, при которой блок отливается вертикально. По этому методу каждая половина блока представляет собой отдельную отливку, но простой жидкостный узел из двух форм получается путем скрепления вместе двух форм в их соответствующих опочках перед заливкой.

Обсуждаются преимущества и недостатки двух типов коленчатого вала, а также правильное распределение материала коленчатого вала для обеспечения правильной балансировки; анализируются эффекты противовесов.

В заключение автор говорит, что конструкция с большим диаметром цилиндра предлагает хороший двигатель, который имеет максимальную производительность в течение самого длительного периода, и который может быть произведен наиболее легко и с меньшими затратами. Он также имеет более совершенные блоки цилиндров, более совершенные коленчатые валы при меньших затратах и ​​предоставляет больше возможностей для дальнейшего развития, чем малокалиберный длинноходный двигатель.

Один из участников дискуссии заявил, что, чтобы подвести воду к седлу выпускного клапана, отверстия клапана часто переполнены, так что возникает необходимость сделать отверстие D-образной формы, и что это не так удовлетворительно в отношении само сиденье остается идеально круглым в рабочих условиях, как и порт концентрического типа. Другие критические анализы с диаграммами представлены в связи с рассмотрением хода цилиндра, один из выводов состоит в том, что увеличение отношения хода цилиндра для двигателей той же мощности увеличивает давление в подшипниках.Также рассматриваются вопросы жесткости и веса коленчатого вала, а также преимущества короткоходного двигателя.

Обсуждаются плавность хода двигателя и факторы, ограничивающие длину двигателя, а также рассматриваются относительные тенденции детонации в малокалиберном и крупнокалиберном двигателях.

больших двигателей | Что мы делаем | FEV

FEV предлагает полный спектр инженерных услуг для двигателей большого диаметра. Эти услуги включают в себя разработку компонентов, а также полную поддержку разработки новых двигателей, начиная с этапа разработки концепции и заканчивая запуском производства.Все новейшие инструменты проектирования, необходимые для удовлетворения разнообразных требований, предъявляемых к разработке двигателей с большим диаметром цилиндра, доступны на FEV.

Поскольку FEV поддерживает такой широкий спектр инструментов автоматизированного проектирования (САПР) и автоматизированного проектирования (САЕ), в большинстве случаев проектные работы могут выполняться напрямую с помощью платформы САПР, предпочитаемой заказчиком. Начиная с самых ранних этапов проектирования, структурный анализ для механической и термической оптимизации компонентов (нагрузка, деформация и т. Д.)) поддерживают проектные усилия. Такой подход обеспечивает значительную экономию времени и средств, поскольку позволяет избежать значительной части обычного экспериментального тестирования.

FEV предлагает услуги по развитию механики, включая функциональные и ресурсные испытания отдельных компонентов и двигателей в целом.